Spaces:
Sleeping
Sleeping
import os | |
from dotenv import load_dotenv | |
import streamlit as st | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.prompts import PromptTemplate | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.chat_models import ChatOpenAI | |
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader, CSVLoader | |
import tempfile | |
# Load environment variables | |
load_dotenv() | |
api_key = os.getenv("OPENAI_API_KEY") | |
# Custom Prompt Template | |
custom_template = """ | |
<s>[INST] You are an Expert PDF and document assistant. Follow these instructions: | |
1. Greet the user and introduce yourself as a professional document assistant. | |
2. Answer user queries based on the document content. If a question is out of scope, politely end the conversation. | |
CHAT HISTORY: {chat_history} | |
QUESTION: {question} | |
ANSWER: | |
</s>[INST] | |
""" | |
CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(custom_template) | |
prompt_template = """<s>[INST] | |
You will answer from the provided files stored in knowledge base. You should only give response or answers from the attached file. If the user input or question seems unclear you should say 'Please provide more specifics about question related to attached files' | |
CONTEXT: {context} | |
CHAT HISTORY: {chat_history} | |
QUESTION: {question} | |
ANSWER: | |
</s>[INST] | |
""" | |
prompt = PromptTemplate(template=prompt_template, | |
input_variables=['context', 'question', 'chat_history']) | |
# Function to extract text from documents | |
def get_document_text(uploaded_files): | |
documents = [] | |
for uploaded_file in uploaded_files: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[-1]) as temp_file: | |
temp_file.write(uploaded_file.read()) | |
temp_file_path = temp_file.name | |
# Load document based on its type | |
if uploaded_file.name.endswith(".pdf"): | |
loader = PyPDFLoader(temp_file_path) | |
documents.extend(loader.load()) | |
elif uploaded_file.name.endswith(".docx") or uploaded_file.name.endswith(".doc"): | |
loader = Docx2txtLoader(temp_file_path) | |
documents.extend(loader.load()) | |
elif uploaded_file.name.endswith(".txt"): | |
loader = TextLoader(temp_file_path) | |
documents.extend(loader.load()) | |
elif uploaded_file.name.endswith(".csv"): | |
loader = CSVLoader(temp_file_path) | |
documents.extend(loader.load()) | |
return documents | |
# Split text into chunks | |
def get_chunks(documents): | |
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) | |
return [chunk for doc in documents for chunk in text_splitter.split_text(doc.page_content)] | |
# Create vectorstore | |
def get_vectorstore(chunks): | |
embeddings = OpenAIEmbeddings() | |
return FAISS.from_texts(texts=chunks, embedding=embeddings) | |
# Create a conversational chain | |
def get_conversationchain(vectorstore): | |
llm = ChatOpenAI(temperature=0.1, model_name='gpt-4o-mini') | |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(search_type="similarity",search_kwargs={"k": 20}), | |
condense_question_prompt=CUSTOM_QUESTION_PROMPT, | |
memory=memory, | |
combine_docs_chain_kwargs={'prompt': prompt} | |
) | |
return conversation_chain | |
# Handle user questions and update chat history | |
def handle_question(question): | |
if not st.session_state.conversation: | |
st.warning("Please process your documents first.") | |
return | |
response = st.session_state.conversation({'question': question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, msg in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.markdown(f"**You:** {msg.content}") | |
else: | |
st.markdown(f"**Bot:** {msg.content}") | |
# Main Streamlit app | |
def main(): | |
st.set_page_config(page_title="Chat with Documents", page_icon="π") | |
st.title("π Chat with Your Documents") | |
st.sidebar.title("Upload Your Files") | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
# File uploader | |
uploaded_files = st.sidebar.file_uploader("Upload your files (PDF, DOCX, TXT, CSV):", accept_multiple_files=True) | |
# Process button | |
if st.sidebar.button("Process Documents"): | |
if uploaded_files: | |
with st.spinner("Processing documents..."): | |
# Extract text and create conversation chain | |
raw_documents = get_document_text(uploaded_files) | |
text_chunks = get_chunks(raw_documents) | |
vectorstore = get_vectorstore(text_chunks) | |
st.session_state.conversation = get_conversationchain(vectorstore) | |
st.success("Documents processed successfully!") | |
else: | |
st.warning("Please upload at least one document.") | |
# User input | |
question = st.text_input("Ask a question about the uploaded documents:") | |
if question: | |
handle_question(question) | |
if __name__ == '__main__': | |
main() | |