File size: 2,626 Bytes
0cb8d44
 
df0cfed
0cb8d44
 
df0cfed
 
 
0cb8d44
df0cfed
 
 
 
 
7c8ef8f
0cb8d44
df0cfed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cb8d44
df0cfed
 
 
 
 
0cb8d44
df0cfed
0cb8d44
df0cfed
0cb8d44
df0cfed
 
 
 
 
 
 
 
 
 
 
 
 
0cb8d44
df0cfed
 
 
0cb8d44
df0cfed
0cb8d44
df0cfed
 
 
0cb8d44
 
 
 
0896dfd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import tensorflow as tf
import numpy as np
import pickle
from PIL import Image
import gradio as gr
from tensorflow.keras.models import Model
from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2, preprocess_input
from tensorflow.keras.preprocessing.sequence import pad_sequences

# Load MobileNetV2 model for feature extraction
mobilenet_model = MobileNetV2(weights="imagenet")
mobilenet_model = Model(inputs=mobilenet_model.inputs, outputs=mobilenet_model.layers[-2].output)

# Load the trained captioning model
model = tf.keras.models.load_model("model.h5")

# Load the tokenizer
with open("tokenizer.pkl", "rb") as tokenizer_file:
    tokenizer = pickle.load(tokenizer_file)

# Set maximum caption length and start/end tokens
max_caption_length = 33  # Adjust based on your model's training
start_token = "startseq"
end_token = "endseq"

# Define a function to get a word from an index
def get_word_from_index(index, tokenizer):
    for word, idx in tokenizer.word_index.items():
        if idx == index:
            return word
    return None

# Preprocess image and extract features
def preprocess_image(image):
    image = image.resize((224, 224))
    image_array = np.array(image)
    image_array = np.expand_dims(image_array, axis=0)
    image_array = preprocess_input(image_array)
    return mobilenet_model.predict(image_array, verbose=0)

# Generate caption from the image features
def generate_caption(image):
    image_features = preprocess_image(image)
    
    caption = start_token
    for _ in range(max_caption_length):
        sequence = tokenizer.texts_to_sequences([caption])[0]
        sequence = pad_sequences([sequence], maxlen=max_caption_length)

        yhat = model.predict([image_features, sequence], verbose=0)
        predicted_index = np.argmax(yhat)
        predicted_word = get_word_from_index(predicted_index, tokenizer)
        
        # If no valid word or end token is predicted, stop generation
        if predicted_word is None or predicted_word == end_token:
            break
        caption += " " + predicted_word

    # Remove start and end tokens for final output
    final_caption = caption.replace(start_token, "").replace(end_token, "").strip()
    return final_caption

# Define Gradio interface
iface = gr.Interface(
    fn=generate_caption,                   # Function to generate caption
    inputs=gr.Image(type="pil"),           # Input an image
    outputs="text",                        # Output a text caption
    title="Image Captioning Model",
    description="Upload an image, and the model will generate a caption describing it."
)

iface.launch()