| 
							 | 
						import tempfile | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from diffusers import PNDMScheduler | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from .test_schedulers import SchedulerCommonTest | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class PNDMSchedulerTest(SchedulerCommonTest): | 
					
					
						
						| 
							 | 
						    scheduler_classes = (PNDMScheduler,) | 
					
					
						
						| 
							 | 
						    forward_default_kwargs = (("num_inference_steps", 50),) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_scheduler_config(self, **kwargs): | 
					
					
						
						| 
							 | 
						        config = { | 
					
					
						
						| 
							 | 
						            "num_train_timesteps": 1000, | 
					
					
						
						| 
							 | 
						            "beta_start": 0.0001, | 
					
					
						
						| 
							 | 
						            "beta_end": 0.02, | 
					
					
						
						| 
							 | 
						            "beta_schedule": "linear", | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        config.update(**kwargs) | 
					
					
						
						| 
							 | 
						        return config | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def check_over_configs(self, time_step=0, **config): | 
					
					
						
						| 
							 | 
						        kwargs = dict(self.forward_default_kwargs) | 
					
					
						
						| 
							 | 
						        num_inference_steps = kwargs.pop("num_inference_steps", None) | 
					
					
						
						| 
							 | 
						        sample = self.dummy_sample | 
					
					
						
						| 
							 | 
						        residual = 0.1 * sample | 
					
					
						
						| 
							 | 
						        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for scheduler_class in self.scheduler_classes: | 
					
					
						
						| 
							 | 
						            scheduler_config = self.get_scheduler_config(**config) | 
					
					
						
						| 
							 | 
						            scheduler = scheduler_class(**scheduler_config) | 
					
					
						
						| 
							 | 
						            scheduler.set_timesteps(num_inference_steps) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            scheduler.ets = dummy_past_residuals[:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            with tempfile.TemporaryDirectory() as tmpdirname: | 
					
					
						
						| 
							 | 
						                scheduler.save_config(tmpdirname) | 
					
					
						
						| 
							 | 
						                new_scheduler = scheduler_class.from_pretrained(tmpdirname) | 
					
					
						
						| 
							 | 
						                new_scheduler.set_timesteps(num_inference_steps) | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                new_scheduler.ets = dummy_past_residuals[:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample | 
					
					
						
						| 
							 | 
						            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample | 
					
					
						
						| 
							 | 
						            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_from_save_pretrained(self): | 
					
					
						
						| 
							 | 
						        pass | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def check_over_forward(self, time_step=0, **forward_kwargs): | 
					
					
						
						| 
							 | 
						        kwargs = dict(self.forward_default_kwargs) | 
					
					
						
						| 
							 | 
						        num_inference_steps = kwargs.pop("num_inference_steps", None) | 
					
					
						
						| 
							 | 
						        sample = self.dummy_sample | 
					
					
						
						| 
							 | 
						        residual = 0.1 * sample | 
					
					
						
						| 
							 | 
						        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for scheduler_class in self.scheduler_classes: | 
					
					
						
						| 
							 | 
						            scheduler_config = self.get_scheduler_config() | 
					
					
						
						| 
							 | 
						            scheduler = scheduler_class(**scheduler_config) | 
					
					
						
						| 
							 | 
						            scheduler.set_timesteps(num_inference_steps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            scheduler.ets = dummy_past_residuals[:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            with tempfile.TemporaryDirectory() as tmpdirname: | 
					
					
						
						| 
							 | 
						                scheduler.save_config(tmpdirname) | 
					
					
						
						| 
							 | 
						                new_scheduler = scheduler_class.from_pretrained(tmpdirname) | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                new_scheduler.set_timesteps(num_inference_steps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                new_scheduler.ets = dummy_past_residuals[:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample | 
					
					
						
						| 
							 | 
						            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample | 
					
					
						
						| 
							 | 
						            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def full_loop(self, **config): | 
					
					
						
						| 
							 | 
						        scheduler_class = self.scheduler_classes[0] | 
					
					
						
						| 
							 | 
						        scheduler_config = self.get_scheduler_config(**config) | 
					
					
						
						| 
							 | 
						        scheduler = scheduler_class(**scheduler_config) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        num_inference_steps = 10 | 
					
					
						
						| 
							 | 
						        model = self.dummy_model() | 
					
					
						
						| 
							 | 
						        sample = self.dummy_sample_deter | 
					
					
						
						| 
							 | 
						        scheduler.set_timesteps(num_inference_steps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for i, t in enumerate(scheduler.prk_timesteps): | 
					
					
						
						| 
							 | 
						            residual = model(sample, t) | 
					
					
						
						| 
							 | 
						            sample = scheduler.step_prk(residual, t, sample).prev_sample | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for i, t in enumerate(scheduler.plms_timesteps): | 
					
					
						
						| 
							 | 
						            residual = model(sample, t) | 
					
					
						
						| 
							 | 
						            sample = scheduler.step_plms(residual, t, sample).prev_sample | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return sample | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_step_shape(self): | 
					
					
						
						| 
							 | 
						        kwargs = dict(self.forward_default_kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        num_inference_steps = kwargs.pop("num_inference_steps", None) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for scheduler_class in self.scheduler_classes: | 
					
					
						
						| 
							 | 
						            scheduler_config = self.get_scheduler_config() | 
					
					
						
						| 
							 | 
						            scheduler = scheduler_class(**scheduler_config) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            sample = self.dummy_sample | 
					
					
						
						| 
							 | 
						            residual = 0.1 * sample | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | 
					
					
						
						| 
							 | 
						                scheduler.set_timesteps(num_inference_steps) | 
					
					
						
						| 
							 | 
						            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | 
					
					
						
						| 
							 | 
						                kwargs["num_inference_steps"] = num_inference_steps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] | 
					
					
						
						| 
							 | 
						            scheduler.ets = dummy_past_residuals[:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            output_0 = scheduler.step_prk(residual, 0, sample, **kwargs).prev_sample | 
					
					
						
						| 
							 | 
						            output_1 = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            self.assertEqual(output_0.shape, sample.shape) | 
					
					
						
						| 
							 | 
						            self.assertEqual(output_0.shape, output_1.shape) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            output_0 = scheduler.step_plms(residual, 0, sample, **kwargs).prev_sample | 
					
					
						
						| 
							 | 
						            output_1 = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            self.assertEqual(output_0.shape, sample.shape) | 
					
					
						
						| 
							 | 
						            self.assertEqual(output_0.shape, output_1.shape) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_timesteps(self): | 
					
					
						
						| 
							 | 
						        for timesteps in [100, 1000]: | 
					
					
						
						| 
							 | 
						            self.check_over_configs(num_train_timesteps=timesteps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_steps_offset(self): | 
					
					
						
						| 
							 | 
						        for steps_offset in [0, 1]: | 
					
					
						
						| 
							 | 
						            self.check_over_configs(steps_offset=steps_offset) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        scheduler_class = self.scheduler_classes[0] | 
					
					
						
						| 
							 | 
						        scheduler_config = self.get_scheduler_config(steps_offset=1) | 
					
					
						
						| 
							 | 
						        scheduler = scheduler_class(**scheduler_config) | 
					
					
						
						| 
							 | 
						        scheduler.set_timesteps(10) | 
					
					
						
						| 
							 | 
						        assert torch.equal( | 
					
					
						
						| 
							 | 
						            scheduler.timesteps, | 
					
					
						
						| 
							 | 
						            torch.LongTensor( | 
					
					
						
						| 
							 | 
						                [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_betas(self): | 
					
					
						
						| 
							 | 
						        for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02]): | 
					
					
						
						| 
							 | 
						            self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_schedules(self): | 
					
					
						
						| 
							 | 
						        for schedule in ["linear", "squaredcos_cap_v2"]: | 
					
					
						
						| 
							 | 
						            self.check_over_configs(beta_schedule=schedule) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_prediction_type(self): | 
					
					
						
						| 
							 | 
						        for prediction_type in ["epsilon", "v_prediction"]: | 
					
					
						
						| 
							 | 
						            self.check_over_configs(prediction_type=prediction_type) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_time_indices(self): | 
					
					
						
						| 
							 | 
						        for t in [1, 5, 10]: | 
					
					
						
						| 
							 | 
						            self.check_over_forward(time_step=t) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_inference_steps(self): | 
					
					
						
						| 
							 | 
						        for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]): | 
					
					
						
						| 
							 | 
						            self.check_over_forward(num_inference_steps=num_inference_steps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_pow_of_3_inference_steps(self): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        num_inference_steps = 27 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for scheduler_class in self.scheduler_classes: | 
					
					
						
						| 
							 | 
						            sample = self.dummy_sample | 
					
					
						
						| 
							 | 
						            residual = 0.1 * sample | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            scheduler_config = self.get_scheduler_config() | 
					
					
						
						| 
							 | 
						            scheduler = scheduler_class(**scheduler_config) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            scheduler.set_timesteps(num_inference_steps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            for i, t in enumerate(scheduler.prk_timesteps[:2]): | 
					
					
						
						| 
							 | 
						                sample = scheduler.step_prk(residual, t, sample).prev_sample | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_inference_plms_no_past_residuals(self): | 
					
					
						
						| 
							 | 
						        with self.assertRaises(ValueError): | 
					
					
						
						| 
							 | 
						            scheduler_class = self.scheduler_classes[0] | 
					
					
						
						| 
							 | 
						            scheduler_config = self.get_scheduler_config() | 
					
					
						
						| 
							 | 
						            scheduler = scheduler_class(**scheduler_config) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample).prev_sample | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_full_loop_no_noise(self): | 
					
					
						
						| 
							 | 
						        sample = self.full_loop() | 
					
					
						
						| 
							 | 
						        result_sum = torch.sum(torch.abs(sample)) | 
					
					
						
						| 
							 | 
						        result_mean = torch.mean(torch.abs(sample)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        assert abs(result_sum.item() - 198.1318) < 1e-2 | 
					
					
						
						| 
							 | 
						        assert abs(result_mean.item() - 0.2580) < 1e-3 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_full_loop_with_v_prediction(self): | 
					
					
						
						| 
							 | 
						        sample = self.full_loop(prediction_type="v_prediction") | 
					
					
						
						| 
							 | 
						        result_sum = torch.sum(torch.abs(sample)) | 
					
					
						
						| 
							 | 
						        result_mean = torch.mean(torch.abs(sample)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        assert abs(result_sum.item() - 67.3986) < 1e-2 | 
					
					
						
						| 
							 | 
						        assert abs(result_mean.item() - 0.0878) < 1e-3 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_full_loop_with_set_alpha_to_one(self): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01) | 
					
					
						
						| 
							 | 
						        result_sum = torch.sum(torch.abs(sample)) | 
					
					
						
						| 
							 | 
						        result_mean = torch.mean(torch.abs(sample)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        assert abs(result_sum.item() - 230.0399) < 1e-2 | 
					
					
						
						| 
							 | 
						        assert abs(result_mean.item() - 0.2995) < 1e-3 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def test_full_loop_with_no_set_alpha_to_one(self): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01) | 
					
					
						
						| 
							 | 
						        result_sum = torch.sum(torch.abs(sample)) | 
					
					
						
						| 
							 | 
						        result_mean = torch.mean(torch.abs(sample)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        assert abs(result_sum.item() - 186.9482) < 1e-2 | 
					
					
						
						| 
							 | 
						        assert abs(result_mean.item() - 0.2434) < 1e-3 | 
					
					
						
						| 
							 | 
						
 |