## 2.24.0 * Fix missing space in error message * use model flag for normalizing embeddings * init logit_bias for non siglip pretrained models * Fix logit_bias load_checkpoint addition * Make CoCa model match CLIP models for logit scale/bias init * Fix missing return of "logit_bias" in CoCa.forward * Add NLLB-CLIP with SigLIP models * Add get_logits method and NLLB tokenizer * Remove the empty file src/open_clip/generation_utils.py * Update params.py: "BatchNorm" -> "LayerNorm" in the description string for "--lock-text-freeze-layer-norm" ## 2.23.0 * Add CLIPA-v2 models * Add SigLIP models * Add MetaCLIP models * Add NLLB-CLIP models * CLIPA train code * Minor changes/fixes * Remove protobuf version limit * Stop checking model name when loading CoCa models * Log native wandb step * Use bool instead of long masks ## 2.21.0 * Add SigLIP loss + training support * Add more DataComp models (B/16, B/32 and B/32@256) * Update default num workers * Update CoCa generation for `transformers>=4.31` * PyTorch 2.0 `state_dict()` compatibility fix for compiled models * Fix padding in `ResizeMaxSize` * Convert JIT model on state dict load for `pretrained='filename…'` * Other minor changes and fixes (typos, README, dependencies, CI) ## 2.20.0 * Add EVA models * Support serial worker training * Fix Python 3.7 compatibility ## 2.19.0 * Add DataComp models ## 2.18.0 * Enable int8 inference without `.weight` attribute ## 2.17.2 * Update push_to_hf_hub ## 2.17.0 * Add int8 support * Update notebook demo * Refactor zero-shot classification code ## 2.16.2 * Fixes for context_length and vocab_size attributes ## 2.16.1 * Fixes for context_length and vocab_size attributes * Fix --train-num-samples logic * Add HF BERT configs for PubMed CLIP model ## 2.16.0 * Add improved g-14 weights * Update protobuf version ## 2.15.0 * Add convnext_xxlarge weights * Fixed import in readme * Add samples per second per gpu logging * Fix slurm example ## 2.14.0 * Move dataset mixtures logic to shard level * Fix CoCa accum-grad training * Safer transformers import guard * get_labels refactoring ## 2.13.0 * Add support for dataset mixtures with different sampling weights * Make transformers optional again ## 2.12.0 * Updated convnext configs for consistency * Added input_patchnorm option * Clean and improve CoCa generation * Support model distillation * Add ConvNeXt-Large 320x320 fine-tune weights ## 2.11.1 * Make transformers optional * Add MSCOCO CoCa finetunes to pretrained models ## 2.11.0 * coca support and weights * ConvNeXt-Large weights ## 2.10.1 * `hf-hub:org/model_id` support for loading models w/ config and weights in Hugging Face Hub ## 2.10.0 * Added a ViT-bigG-14 model. * Added an up-to-date example slurm script for large training jobs. * Added a option to sync logs and checkpoints to S3 during training. * New options for LR schedulers, constant and constant with cooldown * Fix wandb autoresuming when resume is not set * ConvNeXt `base` & `base_w` pretrained models added * `timm-` model prefix removed from configs * `timm` augmentation + regularization (dropout / drop-path) supported ## 2.9.3 * Fix wandb collapsing multiple parallel runs into a single one ## 2.9.2 * Fix braceexpand memory explosion for complex webdataset urls ## 2.9.1 * Fix release ## 2.9.0 * Add training feature to auto-resume from the latest checkpoint on restart via `--resume latest` * Allow webp in webdataset * Fix logging for number of samples when using gradient accumulation * Add model configs for convnext xxlarge ## 2.8.2 * wrapped patchdropout in a torch.nn.Module ## 2.8.1 * relax protobuf dependency * override the default patch dropout value in 'vision_cfg' ## 2.8.0 * better support for HF models * add support for gradient accumulation * CI fixes * add support for patch dropout * add convnext configs ## 2.7.0 * add multilingual H/14 xlm roberta large ## 2.6.1 * fix setup.py _read_reqs ## 2.6.0 * Make openclip training usable from pypi. * Add xlm roberta large vit h 14 config. ## 2.5.0 * pretrained B/32 xlm roberta base: first multilingual clip trained on laion5B * pretrained B/32 roberta base: first clip trained using an HF text encoder ## 2.4.1 * Add missing hf_tokenizer_name in CLIPTextCfg. ## 2.4.0 * Fix #211, missing RN50x64 config. Fix type of dropout param for ResNet models * Bring back LayerNorm impl that casts to input for non bf16/fp16 * zero_shot.py: set correct tokenizer based on args * training/params.py: remove hf params and get them from model config ## 2.3.1 * Implement grad checkpointing for hf model. * custom_text: True if hf_model_name is set * Disable hf tokenizer parallelism ## 2.3.0 * Generalizable Text Transformer with HuggingFace Models (@iejMac) ## 2.2.0 * Support for custom text tower * Add checksum verification for pretrained model weights ## 2.1.0 * lot including sota models, bfloat16 option, better loading, better metrics ## 1.2.0 * ViT-B/32 trained on Laion2B-en * add missing openai RN50x64 model ## 1.1.1 * ViT-B/16+ * Add grad checkpointing support * more robust data loader