Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,835 Bytes
f4a71b5 3a7f59d c53be73 fc34019 f4a71b5 bbf2542 f4a71b5 bbf2542 fc34019 f4a71b5 fc34019 f4a71b5 fc34019 bbf2542 fc34019 bbf2542 fc34019 bbf2542 fc34019 bbf2542 fc34019 bbf2542 fc34019 bbf2542 fc34019 bbf2542 fc34019 bbf2542 fc34019 bbf2542 fc34019 bbf2542 fc34019 bbf2542 926bf18 c53be73 926bf18 c53be73 fc34019 6a3bcfb fc34019 c53be73 926bf18 c53be73 3a7f59d bee03d0 f32e93f b50a168 bbf2542 f4a71b5 fc34019 f4a71b5 fc34019 f4a71b5 fc34019 33fc999 3a7f59d f4a71b5 fc34019 f4a71b5 fc34019 f4a71b5 fc34019 f4a71b5 fc34019 f4a71b5 fc34019 f4a71b5 bbf2542 f4a71b5 fc34019 f4a71b5 bbf2542 fc34019 bbf2542 33fc999 f4a71b5 bbf2542 f4a71b5 bbf2542 f4a71b5 33fc999 f4a71b5 1dd40c0 f4a71b5 fc34019 33fc999 fc34019 33fc999 fc34019 f32e93f fc34019 f4a71b5 f32e93f c53be73 f32e93f f4a71b5 1dd40c0 f4a71b5 1dd40c0 fc34019 f4a71b5 fc34019 f4a71b5 bbf2542 6a3bcfb bbf2542 fc34019 bbf2542 f4a71b5 fc34019 f4a71b5 fc34019 bbf2542 fc34019 bbf2542 f4a71b5 fc34019 f4a71b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import gradio as gr
import spaces
import urllib.request
import os
from datetime import datetime
from functools import partial
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import numpy as np
from pathlib import Path
from tqdm import tqdm
from sklearn.metrics.pairwise import cosine_similarity
from rdkit import Chem
from rdkit.Chem import Draw
from rdkit.Chem.Draw import rdMolDraw2D
import base64
from io import BytesIO
from PIL import Image
import io
import dreams.utils.spectra as su
import dreams.utils.io as dio
from dreams.utils.spectra import PeakListModifiedCosine
from dreams.utils.data import MSData
from dreams.api import dreams_embeddings
from dreams.definitions import *
def smiles_to_html_img(smiles, img_size=200):
"""
Convert SMILES to HTML image string for display in Gradio dataframe
"""
try:
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return f"<div style='text-align: center; color: red;'>Invalid SMILES</div>"
# Use PNG drawing for better control over cropping
d2d = rdMolDraw2D.MolDraw2DCairo(img_size, img_size)
opts = d2d.drawOptions()
opts.clearBackground = False
opts.padding = 0.05 # Minimal padding
opts.bondLineWidth = 2.0 # Make bonds more visible
d2d.DrawMolecule(mol)
d2d.FinishDrawing()
# Get PNG data
png_data = d2d.GetDrawingText()
# Convert PNG data to PIL Image for cropping
img = Image.open(io.BytesIO(png_data))
# Convert to RGBA if not already
if img.mode != 'RGBA':
img = img.convert('RGBA')
# Get the bounding box of non-transparent pixels
bbox = img.getbbox()
if bbox:
# Crop the image to remove transparent space
img = img.crop(bbox)
# Convert back to base64
buffered = io.BytesIO()
img.save(buffered, format='PNG')
img_str = base64.b64encode(buffered.getvalue())
img_str = f"data:image/png;base64,{repr(img_str)[2:-1]}"
return f"<img src='{img_str}' style='max-width: 100%; height: auto;' title='{smiles}' />"
except Exception as e:
return f"<div style='text-align: center; color: red;'>Error: {str(e)}</div>"
def spectrum_to_html_img(spec1, spec2, img_size=1500):
"""
Convert spectrum plot to HTML image string for display in Gradio dataframe
"""
try:
matplotlib.use('Agg') # Use non-interactive backend
# Create the plot using the existing function
su.plot_spectrum(spec=spec1, mirror_spec=spec2, figsize=(2, 1))
# Save the current figure to a buffer with transparent background
buffered = BytesIO()
plt.savefig(buffered, format='png', bbox_inches='tight', dpi=100, transparent=True)
buffered.seek(0)
# Convert to PIL Image for cropping
img = Image.open(buffered)
# Convert to RGBA if not already
if img.mode != 'RGBA':
img = img.convert('RGBA')
# Get the bounding box of non-transparent pixels
bbox = img.getbbox()
if bbox:
# Crop the image to remove transparent space
img = img.crop(bbox)
# Convert back to base64
buffered_cropped = BytesIO()
img.save(buffered_cropped, format='PNG')
img_str = base64.b64encode(buffered_cropped.getvalue())
img_str = f"data:image/png;base64,{repr(img_str)[2:-1]}"
# Close the figure to free memory
plt.close()
return f"<img src='{img_str}' style='max-width: 100%; height: auto;' title='Spectrum comparison' />"
except Exception as e:
return f"<div style='text-align: center; color: red;'>Error: {str(e)}</div>"
def setup():
# Download spectral library
data_path = Path('./DreaMS/data')
data_path.mkdir(parents=True, exist_ok=True)
url = 'https://huggingface.co/datasets/roman-bushuiev/GeMS/resolve/main/data/auxiliary/MassSpecGym_DreaMS.hdf5'
target_path = data_path / 'MassSpecGym_DreaMS.hdf5'
if not target_path.exists():
urllib.request.urlretrieve(url, target_path)
# Download example file
# example_url = 'https://huggingface.co/datasets/titodamiani/PiperNET/resolve/main/lcms/rawfiles/202312_147_P55-Leaf-r2_1uL.mzML'
# example_path = Path('./data/202312_147_P55-Leaf-r2_1uL.mzML')
example_url = 'https://huggingface.co/datasets/roman-bushuiev/GeMS/resolve/main/data/auxiliary/example_piper_2k_spectra.mgf'
example_path = Path('./data/example_piper_2k_spectra.mgf')
example_path.parent.mkdir(parents=True, exist_ok=True)
if not example_path.exists():
urllib.request.urlretrieve(example_url, example_path)
# Run simple example as a test and to download weights
example_url = 'https://raw.githubusercontent.com/pluskal-lab/DreaMS/cc806fa6fea281c1e57dd81fc512f71de9290017/data/examples/example_5_spectra.mgf'
example_path = Path('./data/example_5_spectra.mgf')
example_path.parent.mkdir(parents=True, exist_ok=True)
if not example_path.exists():
urllib.request.urlretrieve(example_url, example_path)
embs = dreams_embeddings(example_path)
print("Setup complete")
def _predict_gpu(msdata):
embs = dreams_embeddings(msdata)
return embs
@spaces.GPU
def _predict_core(lib_pth, in_pth, progress):
"""Core prediction function without error handling"""
in_pth = Path(in_pth)
# # in_pth = Path('DreaMS/data/MSV000086206/peak/mzml/S_N1.mzML') # Example dataset
progress(0, desc="Loading library data...")
msdata_lib = MSData.load(lib_pth)
embs_lib = msdata_lib[DREAMS_EMBEDDING]
print('Shape of the library embeddings:', embs_lib.shape)
progress(0.1, desc="Loading spectra data...")
msdata = MSData.load(in_pth)
progress(0.2, desc="Computing DreaMS embeddings...")
embs = _predict_gpu(msdata)
print('Shape of the query embeddings:', embs.shape)
progress(0.4, desc="Computing similarity matrix...")
sims = cosine_similarity(embs, embs_lib)
print('Shape of the similarity matrix:', sims.shape)
k = 1
topk_cands = np.argsort(sims, axis=1)[:, -k:][:, ::-1]
topk_cands.shape
print(msdata.columns())
# Construct a DataFrame with the top-k candidates for each spectrum and their corresponding similarities
progress(0.5, desc="Constructing results table...")
df = []
cos_sim = su.PeakListModifiedCosine()
total_spectra = len(topk_cands)
for i, topk in enumerate(topk_cands):
progress(0.5 + 0.4 * (i / total_spectra), desc=f"Processing hits for spectrum {i+1}/{total_spectra}...")
for n, j in enumerate(topk):
smiles = msdata_lib.get_smiles(j)
spec1 = msdata.get_spectra(i)
spec2 = msdata_lib.get_spectra(j)
df.append({
'feature_id': i + 1,
'precursor_mz': msdata.get_prec_mzs(i),
# 'RT': msdata.get_values('RTINSECONDS', i),
'topk': n + 1,
'library_j': j,
'library_SMILES': smiles_to_html_img(smiles),
'library_SMILES_raw': smiles,
'Spectrum': spectrum_to_html_img(spec1, spec2),
'Spectrum_raw': su.unpad_peak_list(spec1),
'library_ID': msdata_lib.get_values('IDENTIFIER', j),
'DreaMS_similarity': sims[i, j],
'Modified_cosine_similarity': cos_sim(
spec1=spec1,
prec_mz1=msdata.get_prec_mzs(i),
spec2=spec2,
prec_mz2=msdata_lib.get_prec_mzs(j),
),
'i': i,
'j': j,
'DreaMS_embedding': embs[i],
})
df = pd.DataFrame(df)
# Sort hits by DreaMS similarity
df_top1 = df[df['topk'] == 1].sort_values('DreaMS_similarity', ascending=False)
df = df.set_index('feature_id').loc[df_top1['feature_id'].values].reset_index()
progress(0.9, desc="Post-processing results...")
# Remove unnecessary columns and round similarity scores
df = df.drop(columns=['i', 'j', 'library_j'])
df['DreaMS_similarity'] = df['DreaMS_similarity'].astype(float).round(4)
df['Modified_cosine_similarity'] = df['Modified_cosine_similarity'].astype(float).round(4)
df['precursor_mz'] = df['precursor_mz'].astype(float).round(4)
# df['RT'] = df['RT'].round(1)
df = df.rename(columns={
'topk': 'Top k',
'library_ID': 'Library ID',
"feature_id": "Feature ID",
"precursor_mz": "Precursor m/z",
# "RT": "RT",
"library_SMILES": "Molecule",
"library_SMILES_raw": "SMILES",
"Spectrum": "Spectrum",
"Spectrum_raw": "Input Spectrum",
"DreaMS_similarity": "DreaMS similarity",
"Modified_cosine_similarity": "Modified cos similarity",
"DreaMS_embedding": "DreaMS embedding",
})
progress(0.95, desc="Saving results to CSV...")
# Save full df to .csv
df_path = dio.append_to_stem(in_pth, f"MassSpecGym_hits_{datetime.now().strftime('%Y%m%d_%H%M%S')}").with_suffix('.csv')
df_to_save = df.drop(columns=['Molecule', 'Spectrum', 'Top k'])
df_to_save.to_csv(df_path, index=False)
progress(0.98, desc="Filtering and sorting results...")
# Postprocess to only show most relevant hits
df = df.drop(columns=['DreaMS embedding', "SMILES", "Input Spectrum"])
df = df[df['Top k'] == 1].sort_values('DreaMS similarity', ascending=False)
df = df.drop(columns=['Top k'])
df = df[df["DreaMS similarity"] >= 0.75]
# Add row numbers as first column
df.insert(0, 'Row', range(1, len(df) + 1))
progress(1.0, desc=f"Predictions complete! Found {len(df)} high-confidence matches.")
return df, str(df_path)
def predict(lib_pth, in_pth, progress=gr.Progress(track_tqdm=True)):
"""Wrapper function with error handling"""
try:
return _predict_core(lib_pth, in_pth, progress)
except Exception as e:
raise gr.Error(e)
# Set up
setup()
# Start the Gradio app
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
}
"""
app = gr.Blocks(theme=gr.themes.Default(primary_hue="yellow", secondary_hue="pink"), js=js_func)
with app:
# Input GUI
# gr.Markdown(value="""# DreaMS""")
gr.Image("https://raw.githubusercontent.com/pluskal-lab/DreaMS/cc806fa6fea281c1e57dd81fc512f71de9290017/assets/dreams_background.png", label="DreaMS")
gr.Markdown(value="""
DreaMS (Deep Representations Empowering the Annotation of Mass Spectra) is a transformer-based
neural network designed to interpret tandem mass spectrometry (MS/MS) data (<a href="https://www.nature.com/articles/s41587-025-02663-3">Bushuiev et al., Nature Biotechnology, 2025</a>).
This website provides an easy access to perform library matching with DreaMS. Please upload
your MS/MS file and click on the "Run DreaMS" button. Predictions may currently take up to 10 minutes for files with several thousands of spectra.
""")
with gr.Row(equal_height=True):
in_pth = gr.File(
file_count="single",
label="Input MS/MS file (.mgf or .mzML)",
)
lib_pth = Path('DreaMS/data/MassSpecGym_DreaMS.hdf5') # MassSpecGym library
examples = gr.Examples(
examples=["./data/example_5_spectra.mgf", "./data/example_piper_2k_spectra.mgf"],
inputs=[in_pth],
label="Examples (click on a file to load as input)",
)
# Predict GUI
predict_button = gr.Button(value="Run DreaMS", variant="primary")
# Output GUI
gr.Markdown("## Predictions")
df_file = gr.File(label="Download predictions as .csv", interactive=False, visible=True)
df = gr.Dataframe(
headers=["Row", "Feature ID", "Precursor m/z", "Molecule", "Spectrum", "Library ID", "DreaMS similarity", "Modified cosine similarity"],
datatype=["number", "number", "number", "html", "html", "str", "number", "number"],
col_count=(8, "fixed"),
# wrap=True,
column_widths=["25px", "25px", "28px", "60px", "60px", "50px", "40px", "40px"],
max_height=1000,
show_fullscreen_button=True,
show_row_numbers=False,
show_search='filter',
)
# Main logic
inputs = [in_pth]
outputs = [df, df_file]
predict = partial(predict, lib_pth)
predict_button.click(predict, inputs=inputs, outputs=outputs, show_progress="first")
app.launch(allowed_paths=['./assets'])
|