Spaces:
Running
on
Zero
Running
on
Zero
Anton Bushuiev
commited on
Commit
·
575d08b
1
Parent(s):
2af3eaa
Optimize data loading and image generation for subset to be rendered
Browse files
app.py
CHANGED
@@ -333,18 +333,20 @@ def _create_result_row(i, j, n, msdata, msdata_lib, sims, cos_sim, embs, calcula
|
|
333 |
spec1 = msdata.get_spectra(i)
|
334 |
spec2 = msdata_lib.get_spectra(j)
|
335 |
|
|
|
|
|
336 |
# Base row data
|
337 |
row_data = {
|
338 |
'feature_id': i + 1,
|
339 |
'precursor_mz': msdata.get_prec_mzs(i),
|
340 |
'topk': n + 1,
|
341 |
'library_j': j,
|
342 |
-
'library_SMILES': smiles_to_html_img(smiles),
|
343 |
'library_SMILES_raw': smiles,
|
344 |
-
'Spectrum': spectrum_to_html_img(spec1, spec2),
|
345 |
'Spectrum_raw': su.unpad_peak_list(spec1),
|
346 |
'library_ID': msdata_lib.get_values('IDENTIFIER', j),
|
347 |
-
'DreaMS_similarity':
|
348 |
'i': i,
|
349 |
'j': j,
|
350 |
'DreaMS_embedding': embs[i],
|
@@ -453,7 +455,7 @@ def _predict_core(lib_pth, in_pth, calculate_modified_cosine, progress):
|
|
453 |
try:
|
454 |
# Load library data
|
455 |
progress(0.1, desc="Loading library data...")
|
456 |
-
msdata_lib = MSData.load(temp_lib_path)
|
457 |
embs_lib = msdata_lib[DREAMS_EMBEDDING]
|
458 |
print(f'Shape of the library embeddings: {embs_lib.shape}')
|
459 |
|
@@ -470,7 +472,7 @@ def _predict_core(lib_pth, in_pth, calculate_modified_cosine, progress):
|
|
470 |
topk_cands = np.argsort(sims, axis=1)[:, -k:][:, ::-1]
|
471 |
|
472 |
# Load query data for processing
|
473 |
-
msdata = MSData.load(in_pth)
|
474 |
print(f'Available columns: {msdata.columns()}')
|
475 |
|
476 |
# Construct results DataFrame
|
@@ -611,7 +613,7 @@ def _create_gradio_interface():
|
|
611 |
calculate_modified_cosine = gr.Checkbox(
|
612 |
label="Calculate modified cosine similarity",
|
613 |
value=False,
|
614 |
-
info="Enable to calculate traditional modified cosine similarity scores (slower)"
|
615 |
)
|
616 |
|
617 |
# Prediction button
|
|
|
333 |
spec1 = msdata.get_spectra(i)
|
334 |
spec2 = msdata_lib.get_spectra(j)
|
335 |
|
336 |
+
dreams_similarity = sims[i, j]
|
337 |
+
|
338 |
# Base row data
|
339 |
row_data = {
|
340 |
'feature_id': i + 1,
|
341 |
'precursor_mz': msdata.get_prec_mzs(i),
|
342 |
'topk': n + 1,
|
343 |
'library_j': j,
|
344 |
+
'library_SMILES': smiles_to_html_img(smiles) if dreams_similarity >= SIMILARITY_THRESHOLD else None,
|
345 |
'library_SMILES_raw': smiles,
|
346 |
+
'Spectrum': spectrum_to_html_img(spec1, spec2) if dreams_similarity >= SIMILARITY_THRESHOLD else None,
|
347 |
'Spectrum_raw': su.unpad_peak_list(spec1),
|
348 |
'library_ID': msdata_lib.get_values('IDENTIFIER', j),
|
349 |
+
'DreaMS_similarity': dreams_similarity,
|
350 |
'i': i,
|
351 |
'j': j,
|
352 |
'DreaMS_embedding': embs[i],
|
|
|
455 |
try:
|
456 |
# Load library data
|
457 |
progress(0.1, desc="Loading library data...")
|
458 |
+
msdata_lib = MSData.load(temp_lib_path, in_mem=True)
|
459 |
embs_lib = msdata_lib[DREAMS_EMBEDDING]
|
460 |
print(f'Shape of the library embeddings: {embs_lib.shape}')
|
461 |
|
|
|
472 |
topk_cands = np.argsort(sims, axis=1)[:, -k:][:, ::-1]
|
473 |
|
474 |
# Load query data for processing
|
475 |
+
msdata = MSData.load(in_pth, in_mem=True)
|
476 |
print(f'Available columns: {msdata.columns()}')
|
477 |
|
478 |
# Construct results DataFrame
|
|
|
613 |
calculate_modified_cosine = gr.Checkbox(
|
614 |
label="Calculate modified cosine similarity",
|
615 |
value=False,
|
616 |
+
info="Enable to also calculate traditional modified cosine similarity scores (a bit slower)"
|
617 |
)
|
618 |
|
619 |
# Prediction button
|