Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,102 +1,158 @@
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
import gradio as gr
|
| 4 |
-
from
|
|
|
|
| 5 |
|
| 6 |
# Define a static weather tool function
|
| 7 |
def get_current_weather(location, unit="fahrenheit"):
|
| 8 |
"""Get the current weather in a given location"""
|
| 9 |
if "tokyo" in location.lower():
|
| 10 |
-
return
|
| 11 |
elif "san francisco" in location.lower():
|
| 12 |
-
return
|
| 13 |
elif "paris" in location.lower():
|
| 14 |
-
return
|
| 15 |
else:
|
| 16 |
-
return
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
weather_function = {
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
| 33 |
},
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
}
|
| 37 |
}
|
| 38 |
|
| 39 |
-
# Initialize the Qwen model
|
| 40 |
-
def init_model():
|
| 41 |
-
llm = get_chat_model({
|
| 42 |
-
'model': 'Qwen/Qwen2.5-Coder-32B-Instruct',
|
| 43 |
-
'endpoint_type': 'huggingface_hub',
|
| 44 |
-
'token': os.environ.get("HUGGINGFACE_TOKEN"),
|
| 45 |
-
})
|
| 46 |
-
return llm
|
| 47 |
-
|
| 48 |
# Processing function for Gradio
|
| 49 |
def process_message(message, history):
|
| 50 |
# Initialize model on first run
|
| 51 |
-
if not hasattr(process_message, "
|
| 52 |
-
process_message.
|
| 53 |
|
| 54 |
-
#
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
# Step 1: Get the initial response
|
| 59 |
try:
|
| 60 |
-
|
|
|
|
| 61 |
messages=messages,
|
| 62 |
-
functions=
|
| 63 |
-
stream=True,
|
| 64 |
)
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
if response
|
| 68 |
-
|
| 69 |
-
function_name = response['function_call']['name']
|
| 70 |
-
function_args = json.loads(response['function_call']['arguments'])
|
| 71 |
|
| 72 |
-
#
|
| 73 |
-
if
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
# Step 4: Send the function result back to the model
|
| 80 |
-
messages.append(response) # Add the model's response with function call
|
| 81 |
messages.append({
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
})
|
| 86 |
|
| 87 |
-
# Get final response
|
| 88 |
-
|
| 89 |
messages=messages,
|
| 90 |
-
functions=
|
| 91 |
-
stream=False,
|
| 92 |
)
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
except Exception as e:
|
| 99 |
-
return f"Error
|
| 100 |
|
| 101 |
# Set up the Gradio interface
|
| 102 |
with gr.Blocks(title="Qwen Weather Assistant") as demo:
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
import gradio as gr
|
| 4 |
+
from huggingface_hub import InferenceClient
|
| 5 |
+
from typing import Dict, Any, List
|
| 6 |
|
| 7 |
# Define a static weather tool function
|
| 8 |
def get_current_weather(location, unit="fahrenheit"):
|
| 9 |
"""Get the current weather in a given location"""
|
| 10 |
if "tokyo" in location.lower():
|
| 11 |
+
return {"location": "Tokyo", "temperature": "10", "unit": "celsius"}
|
| 12 |
elif "san francisco" in location.lower():
|
| 13 |
+
return {"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}
|
| 14 |
elif "paris" in location.lower():
|
| 15 |
+
return {"location": "Paris", "temperature": "22", "unit": "celsius"}
|
| 16 |
else:
|
| 17 |
+
return {"location": location, "temperature": "unknown", "unit": unit}
|
| 18 |
|
| 19 |
+
class HfApiModel:
|
| 20 |
+
def __init__(self, max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct', token=None):
|
| 21 |
+
self.max_tokens = max_tokens
|
| 22 |
+
self.temperature = temperature
|
| 23 |
+
self.model_id = model_id
|
| 24 |
+
self.client = InferenceClient(model=model_id, token=token)
|
| 25 |
+
|
| 26 |
+
def generate_with_function_calling(self, messages, functions):
|
| 27 |
+
try:
|
| 28 |
+
# Format messages for the model
|
| 29 |
+
response = self.client.chat_completion(
|
| 30 |
+
messages=messages,
|
| 31 |
+
max_tokens=self.max_tokens,
|
| 32 |
+
temperature=self.temperature,
|
| 33 |
+
tools=functions,
|
| 34 |
+
tool_choice="auto"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
return response
|
| 38 |
+
except Exception as e:
|
| 39 |
+
print(f"Error in generate: {str(e)}")
|
| 40 |
+
return {"error": str(e)}
|
| 41 |
+
|
| 42 |
+
def call_function(self, function_name, arguments):
|
| 43 |
+
if function_name == "get_current_weather":
|
| 44 |
+
location = arguments.get("location", "")
|
| 45 |
+
unit = arguments.get("unit", "fahrenheit")
|
| 46 |
+
return get_current_weather(location, unit)
|
| 47 |
+
return {"error": f"Function {function_name} not found"}
|
| 48 |
+
|
| 49 |
+
# Initialize the model
|
| 50 |
+
def init_model():
|
| 51 |
+
token = os.environ.get("HUGGINGFACE_TOKEN")
|
| 52 |
+
return HfApiModel(
|
| 53 |
+
max_tokens=2096,
|
| 54 |
+
temperature=0.5,
|
| 55 |
+
model_id='Qwen/Qwen2.5-Coder-32B-Instruct'
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# Define the weather function schema
|
| 59 |
weather_function = {
|
| 60 |
+
"type": "function",
|
| 61 |
+
"function": {
|
| 62 |
+
"name": "get_current_weather",
|
| 63 |
+
"description": "Get the current weather in a given location",
|
| 64 |
+
"parameters": {
|
| 65 |
+
"type": "object",
|
| 66 |
+
"properties": {
|
| 67 |
+
"location": {
|
| 68 |
+
"type": "string",
|
| 69 |
+
"description": "The city and state, e.g. San Francisco, CA"
|
| 70 |
+
},
|
| 71 |
+
"unit": {
|
| 72 |
+
"type": "string",
|
| 73 |
+
"enum": ["celsius", "fahrenheit"],
|
| 74 |
+
"description": "The unit of temperature to use. Infer this from the user's location."
|
| 75 |
+
}
|
| 76 |
},
|
| 77 |
+
"required": ["location"]
|
| 78 |
+
}
|
| 79 |
+
}
|
| 80 |
}
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
# Processing function for Gradio
|
| 83 |
def process_message(message, history):
|
| 84 |
# Initialize model on first run
|
| 85 |
+
if not hasattr(process_message, "model"):
|
| 86 |
+
process_message.model = init_model()
|
| 87 |
|
| 88 |
+
# Format conversation history for the model
|
| 89 |
+
formatted_history = []
|
| 90 |
+
for human, assistant in history:
|
| 91 |
+
formatted_history.append({"role": "user", "content": human})
|
| 92 |
+
if assistant: # Check if assistant response exists
|
| 93 |
+
formatted_history.append({"role": "assistant", "content": assistant})
|
| 94 |
+
|
| 95 |
+
# Add the current message
|
| 96 |
+
messages = formatted_history + [{"role": "user", "content": message}]
|
| 97 |
|
|
|
|
| 98 |
try:
|
| 99 |
+
# Get response from the model
|
| 100 |
+
response = process_message.model.generate_with_function_calling(
|
| 101 |
messages=messages,
|
| 102 |
+
functions=[weather_function]
|
|
|
|
| 103 |
)
|
| 104 |
|
| 105 |
+
# Check if there's a function call
|
| 106 |
+
if hasattr(response, "choices") and response.choices:
|
| 107 |
+
message_content = response.choices[0].message
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
# Check if the model wants to call a function
|
| 110 |
+
if hasattr(message_content, "tool_calls") and message_content.tool_calls:
|
| 111 |
+
tool_call = message_content.tool_calls[0]
|
| 112 |
+
function_name = tool_call.function.name
|
| 113 |
+
function_args = json.loads(tool_call.function.arguments)
|
| 114 |
+
|
| 115 |
+
# Call the function
|
| 116 |
+
function_result = process_message.model.call_function(function_name, function_args)
|
| 117 |
+
|
| 118 |
+
# Add the function result to messages
|
| 119 |
+
messages.append({
|
| 120 |
+
"role": "assistant",
|
| 121 |
+
"content": None,
|
| 122 |
+
"tool_calls": [{
|
| 123 |
+
"id": tool_call.id,
|
| 124 |
+
"type": "function",
|
| 125 |
+
"function": {
|
| 126 |
+
"name": function_name,
|
| 127 |
+
"arguments": tool_call.function.arguments
|
| 128 |
+
}
|
| 129 |
+
}]
|
| 130 |
+
})
|
| 131 |
|
|
|
|
|
|
|
| 132 |
messages.append({
|
| 133 |
+
"role": "tool",
|
| 134 |
+
"tool_call_id": tool_call.id,
|
| 135 |
+
"content": json.dumps(function_result)
|
| 136 |
})
|
| 137 |
|
| 138 |
+
# Get final response
|
| 139 |
+
final_response = process_message.model.generate_with_function_calling(
|
| 140 |
messages=messages,
|
| 141 |
+
functions=[weather_function]
|
|
|
|
| 142 |
)
|
| 143 |
+
|
| 144 |
+
if hasattr(final_response, "choices") and final_response.choices:
|
| 145 |
+
return final_response.choices[0].message.content
|
| 146 |
+
return "Error processing function result"
|
| 147 |
+
|
| 148 |
+
# If no function call, return the content directly
|
| 149 |
+
if hasattr(message_content, "content"):
|
| 150 |
+
return message_content.content
|
| 151 |
+
|
| 152 |
+
return "I couldn't process that request properly. Please try again."
|
| 153 |
|
| 154 |
except Exception as e:
|
| 155 |
+
return f"Error: {str(e)}"
|
| 156 |
|
| 157 |
# Set up the Gradio interface
|
| 158 |
with gr.Blocks(title="Qwen Weather Assistant") as demo:
|