Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,19 @@
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
-
from huggingface_hub import login
|
| 6 |
-
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
| 7 |
from llama_index.core.agent import ReActAgent
|
| 8 |
from llama_index.core.tools import FunctionTool
|
|
|
|
| 9 |
|
| 10 |
# Load environment variables
|
| 11 |
load_dotenv()
|
| 12 |
|
| 13 |
-
# Get
|
| 14 |
-
|
| 15 |
-
if not
|
| 16 |
-
raise ValueError("
|
| 17 |
-
|
| 18 |
-
# Authenticate with Hugging Face
|
| 19 |
-
login(token=hf_token)
|
| 20 |
|
| 21 |
# Define weather function with static data
|
| 22 |
def get_current_weather(location: str, unit: str = "fahrenheit") -> dict:
|
|
@@ -31,7 +28,6 @@ def get_current_weather(location: str, unit: str = "fahrenheit") -> dict:
|
|
| 31 |
dict: Weather information including location, temperature and unit
|
| 32 |
"""
|
| 33 |
location = location.lower()
|
| 34 |
-
|
| 35 |
if "tokyo" in location:
|
| 36 |
return {"location": "Tokyo", "temperature": "10", "unit": "celsius"}
|
| 37 |
elif "san francisco" in location:
|
|
@@ -48,12 +44,28 @@ weather_tool = FunctionTool.from_defaults(
|
|
| 48 |
description="Get the current weather in a given location"
|
| 49 |
)
|
| 50 |
|
| 51 |
-
#
|
| 52 |
-
|
| 53 |
-
model_name="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
temperature=0.7,
|
| 55 |
max_tokens=512,
|
| 56 |
-
|
| 57 |
)
|
| 58 |
|
| 59 |
# Create the agent with an appropriate system prompt
|
|
@@ -72,7 +84,6 @@ def respond(message, history):
|
|
| 72 |
with gr.Blocks(title="Weather Assistant") as demo:
|
| 73 |
gr.Markdown("# 🌤️ Weather Assistant")
|
| 74 |
gr.Markdown("### Ask about the weather in Tokyo, San Francisco, or Paris")
|
| 75 |
-
|
| 76 |
chatbot = gr.ChatInterface(
|
| 77 |
respond,
|
| 78 |
examples=[
|
|
@@ -84,8 +95,7 @@ with gr.Blocks(title="Weather Assistant") as demo:
|
|
| 84 |
],
|
| 85 |
title="Chat with Weather Assistant"
|
| 86 |
)
|
| 87 |
-
|
| 88 |
-
gr.Markdown("### Built with LlamaIndex and Qwen2.5-Coder-32B-Instruct")
|
| 89 |
|
| 90 |
# Launch the application
|
| 91 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
import gradio as gr
|
| 4 |
+
import requests
|
| 5 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
| 6 |
from llama_index.core.agent import ReActAgent
|
| 7 |
from llama_index.core.tools import FunctionTool
|
| 8 |
+
from llama_index.llms.openai import OpenAI
|
| 9 |
|
| 10 |
# Load environment variables
|
| 11 |
load_dotenv()
|
| 12 |
|
| 13 |
+
# Get OpenRouter token
|
| 14 |
+
openrouter_token = os.getenv("OPENROUTER_API_KEY")
|
| 15 |
+
if not openrouter_token:
|
| 16 |
+
raise ValueError("OpenRouter token not found. Configure OPENROUTER_API_KEY in your environment variables")
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# Define weather function with static data
|
| 19 |
def get_current_weather(location: str, unit: str = "fahrenheit") -> dict:
|
|
|
|
| 28 |
dict: Weather information including location, temperature and unit
|
| 29 |
"""
|
| 30 |
location = location.lower()
|
|
|
|
| 31 |
if "tokyo" in location:
|
| 32 |
return {"location": "Tokyo", "temperature": "10", "unit": "celsius"}
|
| 33 |
elif "san francisco" in location:
|
|
|
|
| 44 |
description="Get the current weather in a given location"
|
| 45 |
)
|
| 46 |
|
| 47 |
+
# Custom OpenRouter implementation using OpenAI-compatible interface
|
| 48 |
+
class OpenRouterLLM(OpenAI):
|
| 49 |
+
def __init__(self, model_name="qwen/qwen-2.5-coder-32b-instruct:free", temperature=0.7, max_tokens=512, api_key=None):
|
| 50 |
+
# Initialize with custom base URL and model name
|
| 51 |
+
super().__init__(
|
| 52 |
+
model=model_name,
|
| 53 |
+
temperature=temperature,
|
| 54 |
+
max_tokens=max_tokens,
|
| 55 |
+
api_key=api_key,
|
| 56 |
+
api_base="https://openrouter.ai/api/v1",
|
| 57 |
+
additional_headers={
|
| 58 |
+
"HTTP-Referer": "weather-assistant-app",
|
| 59 |
+
"X-Title": "Weather Assistant"
|
| 60 |
+
}
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Configure the language model with OpenRouter
|
| 64 |
+
llm = OpenRouterLLM(
|
| 65 |
+
model_name="qwen/qwen-2.5-coder-32b-instruct:free",
|
| 66 |
temperature=0.7,
|
| 67 |
max_tokens=512,
|
| 68 |
+
api_key=openrouter_token
|
| 69 |
)
|
| 70 |
|
| 71 |
# Create the agent with an appropriate system prompt
|
|
|
|
| 84 |
with gr.Blocks(title="Weather Assistant") as demo:
|
| 85 |
gr.Markdown("# 🌤️ Weather Assistant")
|
| 86 |
gr.Markdown("### Ask about the weather in Tokyo, San Francisco, or Paris")
|
|
|
|
| 87 |
chatbot = gr.ChatInterface(
|
| 88 |
respond,
|
| 89 |
examples=[
|
|
|
|
| 95 |
],
|
| 96 |
title="Chat with Weather Assistant"
|
| 97 |
)
|
| 98 |
+
gr.Markdown("### Built with LlamaIndex and OpenRouter API")
|
|
|
|
| 99 |
|
| 100 |
# Launch the application
|
| 101 |
if __name__ == "__main__":
|