Spaces:
Build error
Build error
| ''' | |
| Downloads models from Hugging Face to models/model-name. | |
| Example: | |
| python download-model.py facebook/opt-1.3b | |
| ''' | |
| import argparse | |
| import base64 | |
| import json | |
| import multiprocessing | |
| import re | |
| import sys | |
| from pathlib import Path | |
| import requests | |
| import tqdm | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('MODEL', type=str, default=None, nargs='?') | |
| parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.') | |
| parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.') | |
| parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).') | |
| args = parser.parse_args() | |
| def get_file(args): | |
| url = args[0] | |
| output_folder = args[1] | |
| idx = args[2] | |
| tot = args[3] | |
| print(f"Downloading file {idx} of {tot}...") | |
| r = requests.get(url, stream=True) | |
| with open(output_folder / Path(url.split('/')[-1]), 'wb') as f: | |
| total_size = int(r.headers.get('content-length', 0)) | |
| block_size = 1024 | |
| t = tqdm.tqdm(total=total_size, unit='iB', unit_scale=True) | |
| for data in r.iter_content(block_size): | |
| t.update(len(data)) | |
| f.write(data) | |
| t.close() | |
| def sanitize_branch_name(branch_name): | |
| pattern = re.compile(r"^[a-zA-Z0-9._-]+$") | |
| if pattern.match(branch_name): | |
| return branch_name | |
| else: | |
| raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.") | |
| def select_model_from_default_options(): | |
| models = { | |
| "Pygmalion 6B original": ("PygmalionAI", "pygmalion-6b", "b8344bb4eb76a437797ad3b19420a13922aaabe1"), | |
| "Pygmalion 6B main": ("PygmalionAI", "pygmalion-6b", "main"), | |
| "Pygmalion 6B dev": ("PygmalionAI", "pygmalion-6b", "dev"), | |
| "Pygmalion 2.7B": ("PygmalionAI", "pygmalion-2.7b", "main"), | |
| "Pygmalion 1.3B": ("PygmalionAI", "pygmalion-1.3b", "main"), | |
| "Pygmalion 350m": ("PygmalionAI", "pygmalion-350m", "main"), | |
| "OPT 6.7b": ("facebook", "opt-6.7b", "main"), | |
| "OPT 2.7b": ("facebook", "opt-2.7b", "main"), | |
| "OPT 1.3b": ("facebook", "opt-1.3b", "main"), | |
| "OPT 350m": ("facebook", "opt-350m", "main"), | |
| } | |
| choices = {} | |
| print("Select the model that you want to download:\n") | |
| for i,name in enumerate(models): | |
| char = chr(ord('A')+i) | |
| choices[char] = name | |
| print(f"{char}) {name}") | |
| char = chr(ord('A')+len(models)) | |
| print(f"{char}) None of the above") | |
| print() | |
| print("Input> ", end='') | |
| choice = input()[0].strip().upper() | |
| if choice == char: | |
| print("""\nThen type the name of your desired Hugging Face model in the format organization/name. | |
| Examples: | |
| PygmalionAI/pygmalion-6b | |
| facebook/opt-1.3b | |
| """) | |
| print("Input> ", end='') | |
| model = input() | |
| branch = "main" | |
| else: | |
| arr = models[choices[choice]] | |
| model = f"{arr[0]}/{arr[1]}" | |
| branch = arr[2] | |
| return model, branch | |
| def get_download_links_from_huggingface(model, branch): | |
| base = "https://huggingface.co" | |
| page = f"/api/models/{model}/tree/{branch}?cursor=" | |
| cursor = b"" | |
| links = [] | |
| classifications = [] | |
| has_pytorch = False | |
| has_safetensors = False | |
| while True: | |
| content = requests.get(f"{base}{page}{cursor.decode()}").content | |
| dict = json.loads(content) | |
| if len(dict) == 0: | |
| break | |
| for i in range(len(dict)): | |
| fname = dict[i]['path'] | |
| is_pytorch = re.match("pytorch_model.*\.bin", fname) | |
| is_safetensors = re.match("model.*\.safetensors", fname) | |
| is_tokenizer = re.match("tokenizer.*\.model", fname) | |
| is_text = re.match(".*\.(txt|json)", fname) or is_tokenizer | |
| if any((is_pytorch, is_safetensors, is_text, is_tokenizer)): | |
| if is_text: | |
| links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") | |
| classifications.append('text') | |
| continue | |
| if not args.text_only: | |
| links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") | |
| if is_safetensors: | |
| has_safetensors = True | |
| classifications.append('safetensors') | |
| elif is_pytorch: | |
| has_pytorch = True | |
| classifications.append('pytorch') | |
| cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50' | |
| cursor = base64.b64encode(cursor) | |
| cursor = cursor.replace(b'=', b'%3D') | |
| # If both pytorch and safetensors are available, download safetensors only | |
| if has_pytorch and has_safetensors: | |
| for i in range(len(classifications)-1, -1, -1): | |
| if classifications[i] == 'pytorch': | |
| links.pop(i) | |
| return links | |
| if __name__ == '__main__': | |
| model = args.MODEL | |
| branch = args.branch | |
| if model is None: | |
| model, branch = select_model_from_default_options() | |
| else: | |
| if model[-1] == '/': | |
| model = model[:-1] | |
| branch = args.branch | |
| if branch is None: | |
| branch = "main" | |
| else: | |
| try: | |
| branch = sanitize_branch_name(branch) | |
| except ValueError as err_branch: | |
| print(f"Error: {err_branch}") | |
| sys.exit() | |
| if branch != 'main': | |
| output_folder = Path("models") / (model.split('/')[-1] + f'_{branch}') | |
| else: | |
| output_folder = Path("models") / model.split('/')[-1] | |
| if not output_folder.exists(): | |
| output_folder.mkdir() | |
| links = get_download_links_from_huggingface(model, branch) | |
| # Downloading the files | |
| print(f"Downloading the model to {output_folder}") | |
| pool = multiprocessing.Pool(processes=args.threads) | |
| results = pool.map(get_file, [[links[i], output_folder, i+1, len(links)] for i in range(len(links))]) | |
| pool.close() | |
| pool.join() | |