Spaces:
Runtime error
Runtime error
File size: 8,423 Bytes
775521b 8d7feb0 c824142 d79f98f 8d7feb0 d79f98f 775521b 71bfdd5 775521b ee4103c 775521b 3125f56 775521b 3125f56 775521b 89eca8d 775521b ee4103c d42674d ee4103c 775521b 4ab9cb1 775521b a873366 775521b a873366 c5c98c5 a873366 01de2b3 bb22bf8 775521b 2d5f363 01de2b3 98bff2b 01de2b3 775521b 2d5f363 0f2023a 2d5f363 0f2023a 2d5f363 775521b 01de2b3 74ee141 775521b 01de2b3 775521b cde6f0b 0f2023a cde6f0b 0f2023a cde6f0b 0f2023a 775521b 01de2b3 74ee141 01de2b3 775521b 8d7feb0 c824142 775521b 4bbfca6 775521b c824142 bb22bf8 c824142 775521b 4bbfca6 c824142 775521b f9ebed3 bc7d2c2 c738eed c824142 3125f56 c824142 775521b 2732917 056b42f 0d73616 d79f98f 775521b c738eed 775521b ee4103c 4caf01e ee4103c 9e0fdcc 3125f56 8d7feb0 d8648b8 8d7feb0 775521b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
from langchain.vectorstores import Chroma
from chromadb.api.fastapi import requests
from langchain.schema import Document
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo
from llm.llmFactory import LLMFactory
from datetime import datetime
import baseInfra.dropbox_handler as dbh
from baseInfra.dbInterface import DbInterface
from uuid import UUID
from langchain.text_splitter import RecursiveCharacterTextSplitter
import logging
logger=logging.getLogger("root")
class ChromaIntf():
def __init__(self):
self.db_interface=DbInterface()
model_name = "BAAI/bge-large-en-v1.5"
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
self.embedding = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs={'device': 'cpu'},
encode_kwargs=encode_kwargs
)
self.persist_db_directory = 'db'
self.persist_docs_directory = "persistence-docs"
self.logger_file = "persistence.log"
try:
dbh.restoreFolder(self.persist_db_directory)
dbh.restoreFolder(self.persist_docs_directory)
except:
print("Probably folder doesn't exist as it is brand new setup")
docs = [
Document(
page_content="this is test doc",
metadata={"timestamp":1696743148.474055,"ID":"2000-01-01 15:57:11::664165-test","source":"test"},
id="2000-01-01 15:57:11::664165-test"
),
]
self.vectorstore = Chroma.from_documents(documents=docs,
embedding=self.embedding,
persist_directory=self.persist_db_directory)
#self.vectorstore._client.
self.metadata_field_info = [
AttributeInfo(
name="timestamp",
description="Python datetime.timestamp of the document in isoformat, can be used for getting date, year, month, time etc ",
type="str",
),
AttributeInfo(
name="source",
description="Type of entry",
type="string or list[string]",
),
]
self.document_content_description = "Information to store for retrival from LLM based chatbot"
lf=LLMFactory()
#self.llm=lf.get_llm("executor2")
self.llm=lf.get_llm("executor3")
self.retriever = SelfQueryRetriever.from_llm(
self.llm,
self.vectorstore,
self.document_content_description,
self.metadata_field_info,
verbose=True
)
async def getRelevantDocs(self,query:str,kwargs:dict):
"""This should also post the result to firebase"""
print("retriver state",self.retriever.search_kwargs)
print("retriver state",self.retriever.search_type)
try:
for key in kwargs.keys():
if "search_type" in key:
self.retriever.search_type=kwargs[key]
else:
self.retriever.search_kwargs[key]=kwargs[key]
except:
print("setting search args failed")
print("reaching step2")
retVal=await self.retriever.aget_relevant_documents(query)
value=[]
excludeMeta=True
print("reaching step3")
print(str(len(retVal)))
print("reaching step4")
try:
for item in retVal:
if excludeMeta:
v=item.page_content+" \n"
else:
v="Info:"+item.page_content+" "
for key in item.metadata.keys():
if key != "ID":
v+=key+":"+str(item.metadata[key])+" "
value.append(v)
print("reaching step5")
self.db_interface.add_to_cache(input=query,value=value)
except:
print("reaching step6")
for item in retVal:
if excludeMeta:
v=item['page_content']+" \n"
else:
v="Info:"+item['page_content']+" "
for key in item['metadata'].keys():
if key != "ID":
v+=key+":"+str(item['metadata'][key])+" "
value.append(v)
print("reaching step7")
self.db_interface.add_to_cache(input=query,value=value)
print("reaching step8")
return retVal
async def addText(self,inStr:str,metadata):
# metadata expected is some of following
# timestamp --> time when added
# source --> notes/references/web/youtube/book/conversation, default conversation
# title --> of document , will be conversation when source is conversation, default blank
# author --> will default to blank
##TODO: Preprocess inStr to remove any html, markdown tags etc.
metadata=metadata.dict()
if "timestamp" not in metadata.keys():
metadata['timestamp']=datetime.now().isoformat()
else:
metadata['timestamp']=datetime.fromisoformat(metadata['timestamp'])
pass
if "source" not in metadata.keys():
metadata['source']="conversation"
if "title" not in metadata.keys():
metadata["title"] = ""
if metadata["source"] == "conversation":
metadata["title"] == "conversation"
if "author" not in metadata.keys():
metadata["author"] = ""
#TODO: If url is present in input or when the splitting need to be done, then we'll need to change how we
# formulate the ID and may be filename to store information
metadata['ID']=metadata['timestamp'].strftime("%Y-%m-%d %H-%M-%S")+"-"+metadata['title']
metadata['Year']=metadata['timestamp'].year
metadata['Month']=metadata['timestamp'].month
metadata['Day']=int(metadata['timestamp'].strftime("%d"))
metadata['Hour']=metadata['timestamp'].hour
metadata['Minute']=metadata['timestamp'].minute
metadata['timestamp']=metadata['timestamp'].isoformat()
print("Metadata is:")
print(metadata)
#md.pop("timestamp")
with open("./docs/"+metadata['ID']+".txt","w") as fd:
fd.write(inStr)
print("written to file", inStr)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=50,
length_function=len,
is_separator_regex=False)
#docs = [ Document(page_content=inStr, metadata=metadata)]
docs=text_splitter.create_documents([inStr],[metadata])
partNumber=0
for doc in docs:
if partNumber > 0:
doc.metadata['ID']+=f"__{partNumber}"
partNumber+=1
print(f"{partNumber} follows:")
print(doc)
try:
print(metadata['ID'])
ids=[doc.metadata['ID'] for doc in docs]
print("ids are:")
print(ids)
return await self.vectorstore.aadd_documents(docs,ids=ids)
except Exception as ex:
logger.exception("exception in adding",exc_info=True)
print("inside expect of addText")
return await self.vectorstore.aadd_documents(docs,ids=[metadata.ID])
async def listDocs(self):
collection=self.vectorstore._client.get_collection(self.vectorstore._LANGCHAIN_DEFAULT_COLLECTION_NAME,embedding_function=self.embedding)
return collection.get()
#return self.vectorstore._client._get(collection_id=self._uuid(collectionInfo.id))
async def persist(self):
self.vectorstore.persist()
await dbh.backupFile(self.logger_file)
await dbh.backupFolder(self.persist_db_directory)
return await dbh.backupFolder(self.persist_docs_directory)
def _uuid(self,uuid_str: str) -> UUID:
try:
return UUID(uuid_str)
except ValueError:
print("Error generating uuid")
raise ValueError(f"Could not parse {uuid_str} as a UUID")
|