File size: 4,900 Bytes
9a1d7f1
 
 
37419af
 
 
 
 
 
9a1d7f1
 
 
 
 
37419af
 
9a1d7f1
 
37419af
 
 
9a1d7f1
 
 
 
37419af
9a1d7f1
37419af
9a1d7f1
 
37419af
 
 
 
 
 
 
 
 
 
 
9a1d7f1
 
 
 
37419af
9a1d7f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37419af
9a1d7f1
37419af
 
9a1d7f1
37419af
9a1d7f1
 
 
 
 
 
 
37419af
9a1d7f1
37419af
9a1d7f1
 
37419af
4ab9cb1
9a1d7f1
37419af
9a1d7f1
37419af
 
 
9a1d7f1
 
 
37419af
9a1d7f1
37419af
 
 
9a1d7f1
 
 
 
 
 
 
 
 
37419af
9a1d7f1
37419af
9a1d7f1
 
 
37419af
9a1d7f1
 
 
 
 
37419af
9a1d7f1
 
37419af
9a1d7f1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from typing import Any, List, Mapping, Optional, Dict
from pydantic import Extra, Field  # , root_validator, model_validator
import os, json
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
import google.generativeai as genai
from google.generativeai import types
import ast

# from langchain.llms import GooglePalm
import requests, logging

logger = logging.getLogger("llm")


class GeminiLLM(LLM):

    model_name: str = "gemini-1.5-flash"  # "gemini-pro"
    temperature: float = 0
    max_tokens: int = 2048
    stop: Optional[List] = []
    prev_prompt: Optional[str] = ""
    prev_stop: Optional[str] = ""
    prev_run_manager: Optional[Any] = None
    model: Optional[Any] = None

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.model = genai.GenerativeModel(self.model_name)
        # self.model = palm.Text2Text(self.model_name)

    @property
    def _llm_type(self) -> str:
        return "text2text-generation"

    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
    ) -> str:
        self.prev_prompt = prompt
        self.prev_stop = stop
        self.prev_run_manager = run_manager
        # print(types.SafetySettingDict)
        if stop == None:
            stop = self.stop
        logger.debug("\nLLM in use is:" + self._llm_type)
        logger.debug("Request to LLM is " + prompt)

        response = self.model.generate_content(
            prompt,
            generation_config={
                "stop_sequences": self.stop,
                "temperature": self.temperature,
                "max_output_tokens": self.max_tokens,
            },
            safety_settings=[
                {
                    "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                    "threshold": "BLOCK_NONE",
                },
                {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
                {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
                {
                    "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                    "threshold": "BLOCK_NONE",
                },
            ],
            stream=False,
        )
        try:
            val = response.text
            if val == None:
                logger.debug("Response from LLM was None\n")
                filterStr = ""
                for item in response.filters:
                    for key, val in item.items():
                        filterStr += key + ":" + str(val)
                logger.error(
                    "Will switch to fallback LLM as response from palm is None::"
                    + filterStr
                )
                raise (Exception)
            else:
                logger.debug("Response from LLM " + val)
        except Exception as ex:
            logger.error("Will switch to fallback LLM as response from palm is None::")
            raise (Exception)
        if run_manager:
            pass
            # run_manager.on_llm_end(val)
        return val

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        return {"name": self.model_name, "type": "palm"}

    def extractJson(self, val: str) -> Any:
        """Helper function to extract json from this LLMs output"""
        # This is assuming the json is the first item within ````
        # palm is responding always with ```json and ending with ```, however sometimes response is not complete
        # in case trailing ``` is not seen, we will call generation again with prev_prompt and result appended to it
        try:
            count = 0
            while val.startswith("```json") and not val.endswith("```") and count < 7:
                val = self._call(
                    prompt=self.prev_prompt + " " + val,
                    stop=self.prev_stop,
                    run_manager=self.prev_run_manager,
                )
                count += 1
            v2 = val.replace("```json", "```").split("```")[1]
            try:
                v4 = json.loads(v2)
            except:
                # v3=v2.replace("\n","").replace("\r","").replace("'","\"")
                v3 = json.dumps(ast.literal_eval(v2))
                v4 = json.loads(v3)
        except:
            v2 = val.replace("\n", "").replace("\r", "")
            v3 = json.dumps(ast.literal_eval(val))
            # v3=v2.replace("'","\"")
            v4 = json.loads(v3)
            # v4=json.loads(v2)
        return v4

    def extractPython(self, val: str) -> Any:
        """Helper function to extract python from this LLMs output"""
        # This is assuming the python is the first item within ````
        v2 = val.replace("```python", "```").split("```")[1]
        return v2