anubhav77 commited on
Commit
c1313e9
·
1 Parent(s): c4d21a8
Files changed (2) hide show
  1. src/indexer.py +1 -1
  2. src/main.py +3 -0
src/indexer.py CHANGED
@@ -7,7 +7,7 @@ from langchain.retrievers.self_query.base import SelfQueryRetriever
7
  from langchain.chains.query_constructor.base import AttributeInfo
8
  from llm.llmFactory import LLMFactory
9
 
10
- model_name = "BAAI/bge-base-en"
11
  encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
12
 
13
  embedding = HuggingFaceBgeEmbeddings(
 
7
  from langchain.chains.query_constructor.base import AttributeInfo
8
  from llm.llmFactory import LLMFactory
9
 
10
+ model_name = "BAAI/bge-large-en-v1.5"
11
  encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
12
 
13
  embedding = HuggingFaceBgeEmbeddings(
src/main.py CHANGED
@@ -41,6 +41,9 @@ api_base="/api/v1"
41
  @app.post(api_base+"/getMatchingDocs")
42
  async def get_matching_docs(inStr: str ) -> Any:
43
  """
 
 
 
44
  """
45
  return getRelevantDocs(inStr)
46
 
 
41
  @app.post(api_base+"/getMatchingDocs")
42
  async def get_matching_docs(inStr: str ) -> Any:
43
  """
44
+ Gets the query embeddings and uses metadata appropriately and gets the matching docs for query
45
+ TODO: Add parameter for type of query and number of docs to return
46
+ TODO: Add parameter to return the source information as well
47
  """
48
  return getRelevantDocs(inStr)
49