anuragshas's picture
Update app.py
193e21a verified
# This is a Gradio app that transliterates English text to Hindi.
import gradio as gr
from xlit_src import XlitEngine
# Define the transliteration function.
def transliterate(input_text):
# Initialize the transliteration engine.
engine = XlitEngine()
# Transliterate the input text.
result = engine.translit_sentence(input_text)
return result
# Create the input and output components.
input_box = gr.Textbox(type="text", label="Input Text")
output_box = gr.Textbox(label="Transliterated Text")
# Create the Gradio interface.
iface = gr.Interface(
fn=transliterate,
inputs=input_box,
outputs=output_box,
title="English to Hindi Transliteration",
description='Model for Transliterating English to Hindi using a Character-level recurrent sequence-to-sequence trained using <a href="http://workshop.colips.org/news2018/dataset.html">NEWS2018 DATASET_04</a>',
article='Author: <a href="https://huggingface.co/anuragshas">Anurag Singh</a> . Using training and inference script from <a href="https://github.com/AI4Bharat/IndianNLP-Transliteration.git">AI4Bharat/IndianNLP-Transliteration</a><p><center><a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fanuragshas%2Fen-hi-transliteration"><img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fanuragshas%2Fen-hi-transliteration&labelColor=%23d9e3f0&countColor=%232ccce4" /></a></center></p>',
examples=["Namaste"],
)
# Launch the interface with caching enabled.
iface.launch(show_api=False, mcp_server=True)