File size: 3,695 Bytes
9b5b26a
 
947a9e7
9b5b26a
 
c19d193
6aae614
8fe992b
9b5b26a
 
5df72d6
9b5b26a
3d1237b
9b5b26a
 
 
 
 
 
 
 
947a9e7
 
 
 
 
897dfa5
947a9e7
 
 
 
 
 
 
 
80f689b
 
 
 
 
5902f9c
80f689b
5902f9c
80f689b
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
80f689b
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import math
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that does nothing yet 
    Args:
        arg1: the first argument
        arg2: the second argument
    """
    return "What magic will you build ?"

@tool
def get_square_root_tool(input_number:int)-> int: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that does nothing yet 
    Args:
        input_number: an integer whose square root is to be calculated
    """
    try:
        # get square root 
        square_root = math.sqrt(input_number)
        return f"Square root of  {input_number} is: {square_root}"
    except Exception as e:
        return f"Error fetching Square root of '{input_number}': {str(e)}" 

@tool
def classify_educational_article(text: str) -> int:
    """
    Classifier for judging the educational value of web pages.
    Args:
        text: The content of the educational article to be classified.
    Returns:
        int: This function will output a dictionary with the input text, the predicted score, and an integer score between 0 and 5
    """
    from transformers import pipeline
    # Perform classification
    model_name = "HuggingFaceTB/fineweb-edu-classifier"
    classifier = pipeline("text-classification", model=model_name)
    inputs = tokenizer(text, return_tensors="pt", padding="longest", truncation=True)
    outputs = classifier(**inputs)
    logits = outputs.logits.squeeze(-1).float().detach().numpy()
    score = logits.item()
    return score
     
             

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer,image_generation_tool,get_square_root_tool,classify_educational_article], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()