File size: 32,690 Bytes
c3e083b
 
ce1c241
c3e083b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd83986
 
c3e083b
cd83986
 
 
 
c3e083b
cd83986
 
 
 
 
073de73
c3e083b
 
 
cd83986
c3e083b
cd83986
 
 
 
 
 
 
 
 
 
c3e083b
c535089
c3e083b
 
 
c535089
c3e083b
 
c535089
c3e083b
 
 
 
 
 
 
 
 
 
 
c535089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3e083b
 
c535089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3e083b
bbb3cfa
c3e083b
c535089
 
 
 
 
 
 
 
 
 
bbb3cfa
 
 
c535089
cd83986
c535089
 
cd83986
 
 
bbb3cfa
c3e083b
bbb3cfa
 
cd83986
 
c535089
 
 
 
 
 
 
 
 
 
 
cd83986
 
 
c535089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd83986
 
 
 
 
c3e083b
cd83986
 
 
c535089
cd83986
 
c535089
bbb3cfa
 
 
c535089
 
 
 
 
 
 
bbb3cfa
c535089
cd83986
c3e083b
c535089
c3e083b
cd83986
 
 
 
 
 
 
c535089
c3e083b
 
c535089
c3e083b
 
cd83986
 
 
bbb3cfa
c535089
b88fc43
c535089
b88fc43
 
 
cd83986
c535089
 
 
 
 
 
 
 
cd83986
c3e083b
 
c535089
 
cd83986
 
 
c3e083b
c535089
cd83986
 
c535089
cd83986
c535089
c3e083b
 
c535089
c3e083b
 
cd83986
 
 
f7c80a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c535089
 
c1181ca
c535089
c1181ca
c535089
 
 
 
 
 
 
 
 
 
c1181ca
c535089
f7c80a7
fa67b37
 
 
 
 
 
f7c80a7
fa67b37
 
 
f974ed7
9d73989
7dcd8b6
fa67b37
7d9515b
 
 
 
 
 
 
 
 
 
 
c535089
f7c80a7
fa67b37
504a846
fa67b37
f974ed7
 
504a846
7dcd8b6
fa67b37
f7c80a7
1166a6c
 
 
 
 
 
 
 
 
 
 
 
 
 
504a846
f974ed7
f7c80a7
 
504a846
 
f7c80a7
 
 
fa67b37
f7c80a7
fa67b37
c535089
c1181ca
7dcd8b6
fa67b37
f7c80a7
 
 
 
 
 
 
 
f974ed7
f7c80a7
c535089
f974ed7
c535089
f7c80a7
c535089
 
 
 
f7c80a7
 
 
 
 
 
 
 
 
f974ed7
c535089
f7c80a7
f974ed7
 
 
590858e
c535089
f7c80a7
c1181ca
 
c535089
 
 
590858e
f7c80a7
 
 
c1181ca
c535089
 
f7c80a7
c535089
c1181ca
f7c80a7
 
 
c535089
c1181ca
 
f7c80a7
 
f974ed7
f7c80a7
 
f974ed7
f7c80a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f974ed7
 
 
 
 
 
 
 
 
 
f7c80a7
6964b8e
f974ed7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6964b8e
 
 
f974ed7
6964b8e
 
 
 
f974ed7
 
 
6964b8e
 
f974ed7
bbb3cfa
d13041a
9d73989
 
c535089
9d73989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f974ed7
9d73989
 
f974ed7
9d73989
 
 
 
 
 
 
f974ed7
9d73989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd83986
9d73989
 
 
 
 
 
 
f974ed7
9d73989
f974ed7
f7c80a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
# app.py
import os
import time
import torch
import numpy as np
import gradio as gr
from PIL import Image, ImageOps
from tqdm.auto import tqdm
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from pinecone import Pinecone, ServerlessSpec
from pinecone_text.sparse import BM25Encoder
from transformers import CLIPProcessor, CLIPModel
import openai

# ------------------- Keys & Setup -------------------
openai.api_key = os.getenv("OPENAI_API_KEY")
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
spec = ServerlessSpec(cloud=os.getenv("PINECONE_CLOUD") or "aws", region=os.getenv("PINECONE_REGION") or "us-east-1")
index_name = "hybrid-image-search"

if index_name not in pc.list_indexes().names():
    pc.create_index(index_name, dimension=512, metric='dotproduct', spec=spec)
    while not pc.describe_index(index_name).status['ready']:
        time.sleep(1)
index = pc.Index(index_name)

# ------------------- Models & Dataset -------------------
fashion = load_dataset("ashraq/fashion-product-images-small", split="train")
images = fashion["image"]
metadata = fashion.remove_columns("image").to_pandas()
bm25 = BM25Encoder()
bm25.fit(metadata["productDisplayName"])
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = SentenceTransformer('sentence-transformers/clip-ViT-B-32', device=device)
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

# ------------------- Helper Functions -------------------
def hybrid_scale(dense, sparse, alpha: float):
    if alpha < 0 or alpha > 1:
        raise ValueError("Alpha must be between 0 and 1")
    hsparse = {
        'indices': sparse['indices'],
        'values':  [v * (1 - alpha) for v in sparse['values']]
    }
    hdense = [v * alpha for v in dense]
    return hdense, hsparse

def extract_intent_from_openai(query: str):
    prompt = f"""
You are an assistant for a fashion search engine. Extract the user's intent from the following query.
Return a Python dictionary with keys: category, gender, subcategory, color.
If something is missing, use null.

Query: "{query}"
Only return the dictionary.
"""
    try:
        response = openai.ChatCompletion.create(
            model="gpt-4",
            messages=[{"role": "user", "content": prompt}],
            temperature=0
        )
        raw = response.choices[0].message['content']
        structured = eval(raw)
        return structured
    except Exception as e:
        print(f"⚠️ OpenAI intent extraction failed: {e}")
        return {"include": {}, "exclude": {}}
#-----------------below changed------------------------------#

import imagehash
from PIL import Image

def is_duplicate(img, existing_hashes, hash_size=16, tolerance=0):
    """
    Checks if the image is a near-duplicate based on perceptual hash.
    :param img: PIL Image
    :param existing_hashes: set of previously seen hashes
    :param hash_size: size of the hash (default=16 for more precision)
    :param tolerance: allowable Hamming distance for near-duplicates
    :return: (bool) whether image is duplicate
    """
    img_hash = imagehash.phash(img, hash_size=hash_size)
    for h in existing_hashes:
        if abs(img_hash - h) <= tolerance:
            return True
    existing_hashes.add(img_hash)
    return False

def extract_metadata_filters(query: str):
    query_lower = query.lower()
    gender = None
    category = None
    subcategory = None
    color = None

    # --- Gender Mapping ---
    gender_map = {
        "men": "Men", "man": "Men", "mens": "Men", "mans": "Men", "male": "Men",
        "women": "Women", "woman": "Women", "womens": "Women", "female": "Women",
        "boys": "Boys", "boy": "Boys",
        "girls": "Girls", "girl": "Girls",
        "kids": "Kids", "kid": "Kids",
        "unisex": "Unisex"
    }
    for term, mapped_value in gender_map.items():
        if term in query_lower:
            gender = mapped_value
            break

    # --- Category Mapping ---
    category_map = {
        "shirt": "Shirts",
        "tshirt": "Tshirts",
        "t-shirt": "Tshirts",
        "jeans": "Jeans",
        "watch": "Watches",
        "kurta": "Kurtas",
        "dress": "Dresses",
        "trousers": "Trousers", "pants": "Trousers",
        "shorts": "Shorts",
        "footwear": "Footwear",
        "shoes": "Shoes",
        "fashion": "Apparel"
    }
    for term, mapped_value in category_map.items():
        if term in query_lower:
            category = mapped_value
            break

    # --- SubCategory Mapping ---
    subCategory_list = [
        "Accessories", "Apparel Set", "Bags", "Bath and Body", "Beauty Accessories",
        "Belts", "Bottomwear", "Cufflinks", "Dress", "Eyes", "Eyewear", "Flip Flops",
        "Fragrance", "Free Gifts", "Gloves", "Hair", "Headwear", "Home Furnishing",
        "Innerwear", "Jewellery", "Lips", "Loungewear and Nightwear", "Makeup",
        "Mufflers", "Nails", "Perfumes", "Sandal", "Saree", "Scarves", "Shoe Accessories",
        "Shoes", "Skin", "Skin Care", "Socks", "Sports Accessories", "Sports Equipment",
        "Stoles", "Ties", "Topwear", "Umbrellas", "Vouchers", "Wallets", "Watches",
        "Water Bottle", "Wristbands"
    ]
    if "topwear" in query_lower or "top" in query_lower:
        subcategory = "Topwear"
    else:
        query_words = query_lower.split()
        for subcat in subCategory_list:
            if subcat.lower() in query_words:
                subcategory = subcat
                break

    # --- Color Extraction ---
    color_list = [
        "red", "blue", "green", "yellow", "black", "white",
        "orange", "pink", "purple", "brown", "grey", "beige"
    ]
    for c in color_list:
        if c in query_lower:
            color = c.capitalize()
            break

    # --- Invalid pairs ---
    invalid_pairs = {
        ("Men", "Dresses"), ("Men", "Sarees"), ("Men", "Skirts"),
        ("Boys", "Dresses"), ("Boys", "Sarees"),
        ("Girls", "Boxers"), ("Men", "Heels")
    }
    if (gender, category) in invalid_pairs:
        print(f"⚠️ Invalid pair: {gender} + {category}, dropping gender")
        gender = None

    # --- Fallback for missing category ---
    if gender and not category:
        category = "Apparel"

    # --- Refine subcategory for party/wedding-related queries ---
    if "party" in query_lower or "wedding" in query_lower or "cocktail" in query_lower:
        if subcategory in ["Loungewear and Nightwear", "Nightdress", "Innerwear"]:
            subcategory = None  # reset it to avoid filtering into wrong items


    return gender, category, subcategory, color

# ------------------- Search Functions -------------------
def search_fashion(query: str, alpha: float, start: int = 0, end: int = 12, gender_override: str = None):
    intent = extract_intent_from_openai(query)

    include = intent.get("include", {})
    exclude = intent.get("exclude", {})

    gender = include.get("gender")
    category = include.get("category")
    subcategory = include.get("subcategory")
    color = include.get("color")

    # Apply override from dropdown
    if gender_override:
        gender = gender_override

    # Build Pinecone filter
    filter = {}

    # Inclusion filters
    if gender:
        filter["gender"] = gender
    if category:
        if category in ["Footwear", "Shoes"]:
            filter["articleType"] = {"$regex": ".*(Shoe|Footwear).*"}
        else:
            filter["articleType"] = category
    if subcategory:
        filter["subCategory"] = subcategory
    
    # Step 4: Exclude irrelevant items for party-like queries
    query_lower = query.lower()
    if any(word in query_lower for word in ["party", "wedding", "cocktail", "traditional", "reception"]):
        filter.setdefault("subCategory", {})
        if isinstance(filter["subCategory"], dict):
            filter["subCategory"]["$nin"] = [
                "Loungewear and Nightwear", "Nightdress", "Innerwear", "Sleepwear", "Vests", "Boxers"
            ]


    if color:
        filter["baseColour"] = color

    # Exclusion filters
    exclude_filter = {}
    if exclude.get("color"):
        exclude_filter["baseColour"] = {"$ne": exclude["color"]}
    if exclude.get("subcategory"):
        exclude_filter["subCategory"] = {"$ne": exclude["subcategory"]}
    if exclude.get("category"):
        exclude_filter["articleType"] = {"$ne": exclude["category"]}

    # Combine all filters
    if filter and exclude_filter:
        final_filter = {"$and": [filter, exclude_filter]}
    elif filter:
        final_filter = filter
    elif exclude_filter:
        final_filter = exclude_filter
    else:
        final_filter = None

    print(f"πŸ” Using filter: {final_filter} (showing {start} to {end})")

    # Hybrid encoding
    sparse = bm25.encode_queries(query)
    dense = model.encode(query).tolist()
    hdense, hsparse = hybrid_scale(dense, sparse, alpha=alpha)

    result = index.query(
        top_k=100,
        vector=hdense,
        sparse_vector=hsparse,
        include_metadata=True,
        filter=final_filter
    )

    # Retry fallback
    if len(result["matches"]) == 0:
        print("⚠️ No results, retrying with alpha=0 sparse only")
        hdense, hsparse = hybrid_scale(dense, sparse, alpha=0)
        result = index.query(
            top_k=100,
            vector=hdense,
            sparse_vector=hsparse,
            include_metadata=True,
            filter=final_filter
        )

    # Format results
    imgs_with_captions = []
    seen_hashes = set()

    for r in result["matches"]:
        idx = int(r["id"])
        img = images[idx]
        meta = r.get("metadata", {})
        if not isinstance(img, Image.Image):
            img = Image.fromarray(np.array(img))
        padded = ImageOps.pad(img, (256, 256), color="white")
        caption = str(meta.get("productDisplayName", "Unknown Product"))

        if not is_duplicate(padded, seen_hashes):
            imgs_with_captions.append((padded, caption))

        if len(imgs_with_captions) >= end:
            break

    return imgs_with_captions

def search_by_image(uploaded_image, alpha=0.5, start=0, end=12):
    # Step 1: Preprocess image for CLIP model
    processed = clip_processor(images=uploaded_image, return_tensors="pt").to(device)

    with torch.no_grad():
        image_vec = clip_model.get_image_features(**processed)
        image_vec = image_vec.cpu().numpy().flatten().tolist()

    # Step 2: Query Pinecone index for similar images
    result = index.query(
        top_k=100,  # fetch more to allow deduplication
        vector=image_vec,
        include_metadata=True
    )

    matches = result["matches"]
    imgs_with_captions = []
    seen_hashes = set()

    # Step 3: Deduplicate based on image hash
    for r in matches:
        idx = int(r["id"])
        img = images[idx]
        meta = r.get("metadata", {})
        caption = str(meta.get("productDisplayName", "Unknown Product"))

        if not isinstance(img, Image.Image):
            img = Image.fromarray(np.array(img))

        padded = ImageOps.pad(img, (256, 256), color="white")

        if not is_duplicate(padded, seen_hashes):
            imgs_with_captions.append((padded, caption))

        if len(imgs_with_captions) >= end:
            break

    return imgs_with_captions

# import gradio as gr
# import whisper

# asr_model = whisper.load_model("base")

# def handle_voice_search(vf_path, a, offset, gender_ui):
#     try:
#         transcription = asr_model.transcribe(vf_path)["text"].strip()
#     except:
#         transcription = ""
#     filters = extract_intent_from_openai(transcription) if transcription else {}
#     gender_override = gender_ui if gender_ui else filters.get("gender")
#     results = search_fashion(transcription, a, 0, 12, gender_override)
#     seen_ids = {r[1] for r in results}
#     return results, 12, transcription, None, gender_override, results, seen_ids

# custom_css = """
# /* === Global Styling === */
# /* === Override Gradio default background === */



# /* Add soft card-like containers */
# .gr-box, .gr-block, .gr-column, .gr-row {
#     background-color: #ffffff !important;
#     border-radius: 12px;
#     padding: 16px !important;
#     box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05);
# }

# #app-bg {
#     min-height: 100vh;
#     padding: 0;
#     margin: 0;
#     # background: radial-gradient(circle at center, #0b1f36 0%, #033e3e 100%);
#     display: flex;
#     justify-content: center;
#     align-items: flex-start;
#     background-attachment: fixed;
#     position: relative;
#     overflow: hidden;
# }

# #app-bg::before {
#     content: "";
#     position: absolute;
#     top: 0; left: 0;
#     width: 100%; height: 100%;
#     background: radial-gradient(circle at center, rgba(0, 255, 255, 0.08), transparent);
#     z-index: 0;
# }

# #main-container {
#     z-index: 1;
#     position: relative;
# }




# /* === Heading Style === */
# h1, .gr-markdown h1 {
#     font-size: 2.2rem !important;
#     font-weight: bold;
#     color: #000000;
#     text-align: center;
#     margin-bottom: 1rem;
# }

# /* === Tabs === */
# .gr-tab {
#     border-radius: 12px !important;
#     background-color: #ffffff !important;
#     box-shadow: 0 3px 10px rgba(0, 0, 0, 0.08);
#     padding: 16px !important;
#     margin-top: 12px;
# }

# /* === Textbox, Dropdown, Slider === */
# input[type="text"], .gr-textbox textarea, .gr-dropdown, .gr-slider {
#     border-radius: 8px !important;
#     border: 1px solid #ccc !important;
#     padding: 10px !important;
#     font-size: 16px;
#     box-shadow: 0 1px 3px rgba(0,0,0,0.05);
# }

# /* === Image Upload === */
# .gr-image {
#     width: 100% !important;
#     max-width: 100% !important;
#     border-radius: 12px;
#     box-shadow: 0 2px 10px rgba(0,0,0,0.1);
# }

# /* === Buttons (custom style .button-36) === */
# .gr-button {
#   background-color: #DBDBDB !important;
#   background-image: linear-gradient(92.88deg, #455EB5 9.16%, #5643CC 43.89%, #673FD7 64.72%);
#   border-radius: 8px !important;
#   border-style: none !important;
#   box-sizing: border-box;
#   color: #FFFFFF !important;
#   cursor: pointer;
#   flex-shrink: 0;
#   font-family: "Inter UI","SF Pro Display",-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Oxygen,Ubuntu,Cantarell,"Open Sans","Helvetica Neue",sans-serif;
#   font-size: 16px;
#   font-weight: 500;
#   height: 4rem;
#   padding: 0 1.6rem;
#   text-align: center;
#   text-shadow: rgba(0, 0, 0, 0.25) 0 3px 8px;
#   transition: all .5s;
#   user-select: none;
#   -webkit-user-select: none;
#   touch-action: manipulation;
# }

# .gr-button:hover {
#   box-shadow: rgba(80, 63, 205, 0.5) 0 1px 30px;
#   transition-duration: .1s;
# }

# /* === Responsive padding === */
# @media (min-width: 768px) {
#   .gr-button {
#     padding: 0 2.6rem;
#   }
# }

# /* === Gallery Grid === */
# .gr-gallery {
#     padding-top: 12px;
# }
# .gr-gallery-item {
#     width: 128px !important;
#     height: 128px !important;
#     transition: transform 0.3s ease-in-out;
#     border-radius: 8px;
#     overflow: hidden;
# }
# .gr-gallery-item:hover {
#     transform: scale(1.06);
#     box-shadow: 0 3px 12px rgba(0,0,0,0.15);
# }
# .gr-gallery-item img {
#     object-fit: cover !important;
#     width: 100% !important;
#     height: 100% !important;
#     border-radius: 8px;
# }

# /* === Audio Upload === */
# .gr-audio {
#     width: 100% !important;
#     border-radius: 12px;
#     background-color: #fff !important;
#     box-shadow: 0 1px 5px rgba(0,0,0,0.1);
# }

# /* === Footer === */
# .gr-markdown:last-child {
#     text-align: center;
#     font-size: 14px;
#     color: #666;
#     padding-top: 1rem;
# }



# #main-container {
#     width: 95%;
#     max-width: 1100px;
#     margin: 20px auto !important;
#     padding: 16px;
#     background: #ffffff;
#     border-radius: 18px;
#     box-shadow: 0 10px 30px rgba(0,0,0,0.08);
#     border: 3px solid orange;
#     # overflow-y: auto;
#     # max-height: 90vh;
# }

# /* For phones and smaller devices */
# @media (max-width: 768px) {
#     #main-container {
#         width: 100%;
#         margin: 8px;
#         padding: 12px;
#         border-radius: 12px;
#         max-height: none;
#     }

#     .gr-button {
#         font-size: 14px;
#         height: 3.2rem;
#     }

#     input[type="text"], .gr-textbox textarea, .gr-dropdown, .gr-slider {
#         font-size: 14px;
#         padding: 8px !important;
#     }

#     h1, .gr-markdown h1 {
#         font-size: 1.6rem !important;
#     }

#     .gr-gallery-item {
#         width: 100px !important;
#         height: 100px !important;
#     }

#     .gr-image {
#         height: auto !important;
#     }
# }



# /* === Tab Label Styling === */
# button[role="tab"] {
#     color: #000000 !important;         /* Default tab text color: black */
#     font-weight: 500;
#     transition: color 0.3s ease-in-out;
#     font-size: 16px;
# }

# /* Active tab title */
# button[role="tab"][aria-selected="true"] {
#     color: #f57c00 !important;         /* Active tab text color: orange */
#     font-weight: bold !important;
# }

# /* Hover effect on tab titles */
# button[role="tab"]:hover {
#     color: #f57c00 !important;  /* Orange on hover */
#     font-weight: 600;
#     cursor: pointer;
# }
# /* === Uniform Input Sizes for Text, Audio, Image === */
# .gr-textbox, .gr-audio, .gr-image {
#     max-width: 100% !important;
#     width: 100% !important;
# }

# .gr-audio, .gr-image {
#     max-width: 500px !important;
#     margin: 0 auto;
# }

# .gr-image {
#     height: 256px !important;
# }  
# """



# with gr.Blocks(css=custom_css) as demo:
#   with gr.Column(elem_id="app-bg"):
#     with gr.Column(elem_id="main-container"):
#       gr.Markdown("# πŸ›οΈ Fashion Product Hybrid Search")

#       alpha = gr.Slider(0, 1, value=0.5, label="Hybrid Weight (alpha: 0=sparse, 1=dense)")

#       with gr.Tabs():
#           with gr.Tab("Text Search"):
#               query = gr.Textbox(
#                   label="Text Query",
#                   placeholder="e.g., floral summer dress for women"
#               )
#               gender_dropdown = gr.Dropdown(
#                   ["", "Men", "Women", "Boys", "Girls", "Kids", "Unisex"],
#                   label="Gender Filter (optional)"
#               )
#               text_search_btn = gr.Button("Search by Text", elem_classes="search-btn")
#           with gr.Tab("πŸŽ™οΈ Voice Search"):
#             voice_input = gr.Audio(label="Speak Your Query", type="filepath")
#             voice_gender_dropdown = gr.Dropdown(["", "Men", "Women", "Boys", "Girls", "Kids", "Unisex"], label="Gender")
#             voice_search_btn = gr.Button("Search by Voice")


#           with gr.Tab("Image Search"):
#               # image_input = gr.Image(
#               #     type="pil",
#               #     label="Upload an image",
#               #     sources=["upload", "clipboard"],
#               #     height=256,
#               #     width=356
#               # )
#               image_input = gr.Image(
#                 type="pil",
#                 label="Upload an image",
#                 sources=["upload", "clipboard"],
#                 # tool=None,
#                 height=400
#               )

#               image_gender_dropdown = gr.Dropdown(
#                   ["", "Men", "Women", "Boys", "Girls", "Kids", "Unisex"],
#                   label="Gender Filter (optional)"
#               )
#               image_search_btn = gr.Button("Search by Image", elem_classes="search-btn")

#       gallery = gr.Gallery(label="Search Results", columns=6, height=None)
#       load_more_btn = gr.Button("Load More")

#     # --- UI State Holders ---
#       search_offset = gr.State(0)
#       current_query = gr.State("")
#       current_image = gr.State(None)
#       current_gender = gr.State("")
#       shown_results = gr.State([])
#       shown_ids = gr.State(set())

#     # --- Unified Search Function ---
#     def unified_search(q, uploaded_image, a, offset, gender_ui):
#         start = 0
#         end = 12

#         filters = extract_intent_from_openai(q) if q.strip() else {}
#         gender_override = gender_ui if gender_ui else filters.get("gender")

#         if uploaded_image is not None:
#             results = search_by_image(uploaded_image, a, start, end)
#         elif q.strip():
#             results = search_fashion(q, a, start, end, gender_override)
#         else:
#             results = []

#         seen_ids = {r[1] for r in results}
#         return results, end, q, uploaded_image, gender_override, results, seen_ids

#     # Text Search
#     # Text Search
#     text_search_btn.click(
#       unified_search,
#       inputs=[query, gr.State(None), alpha, search_offset, gender_dropdown],
#       outputs=[gallery, search_offset, current_query, current_image, current_gender, shown_results, shown_ids]
#     )

#     voice_search_btn.click(
#     handle_voice_search,
#     inputs=[voice_input, alpha, search_offset, voice_gender_dropdown],
#     outputs=[gallery, search_offset, current_query, current_image, current_gender, shown_results, shown_ids]
# )

#     # Image Search
#     image_search_btn.click(
#         unified_search,
#         inputs=[gr.State(""), image_input, alpha, search_offset, image_gender_dropdown],
#         outputs=[gallery, search_offset, current_query, current_image, current_gender, shown_results, shown_ids]
#     )

#     # --- Load More Button ---
#     def load_more_fn(a, offset, q, img, gender_ui, prev_results, prev_ids):
#         start = offset
#         end = offset + 12
#         gender_override = gender_ui

#         if img is not None:
#             new_results = search_by_image(img, a, start, end)
#         elif q.strip():
#             new_results = search_fashion(q, a, start, end, gender_override)
#         else:
#             new_results = []

#         filtered_new = []
#         new_ids = set()
#         for item in new_results:
#             img_obj, caption = item
#             if caption not in prev_ids:
#                 filtered_new.append(item)
#                 new_ids.add(caption)

#         combined = prev_results + filtered_new
#         updated_ids = prev_ids.union(new_ids)

#         return combined, end, combined, updated_ids

#     load_more_btn.click(
#         load_more_fn,
#         inputs=[alpha, search_offset, current_query, current_image, current_gender, shown_results, shown_ids],
#         outputs=[gallery, search_offset, shown_results, shown_ids]
#     )

#     # gr.Markdown("🧠 Powered by OpenAI + Hybrid AI Fashion Search")

# demo.launch()


import gradio as gr
import whisper

asr_model = whisper.load_model("base")

def handle_voice_search(vf_path, a, offset, gender_ui):
    try:
        transcription = asr_model.transcribe(vf_path)["text"].strip()
    except:
        transcription = ""
    filters = extract_intent_from_openai(transcription) if transcription else {}
    gender_override = gender_ui if gender_ui else filters.get("gender")
    results = search_fashion(transcription, a, 0, 12, gender_override)
    seen_ids = {r[1] for r in results}
    return results, 12, transcription, None, gender_override, results, seen_ids

custom_css = """
/* === Background Styling === */
# html, body {
#     margin: 0;
#     padding: 0;
#     height: 100%;
#     overflow: auto;
# }
html, body {
    height: auto;
    min-height: 100%;
    overflow-x: hidden;
}



# #app-bg {
#     min-height: 100vh;
#     display: flex;
#     justify-content: center;
#     align-items: flex-start;
#     background: radial-gradient(circle at center, #C2C5EF 0%, #E0E2F5 100%) !important;
#     background-attachment: fixed;
#     position: relative;
#     overflow-y: auto;
#     padding: 24px;
# }
#app-bg {
    background: radial-gradient(circle at center, #C2C5EF 0%, #E0E2F5 100%) !important;
    background-attachment: fixed;
    padding: 24px;
    width: 100%;
}




/* === Main Content Container === */
# #main-container {
#     width: 95%;
#     max-width: 1100px;
#     margin: 20px auto;
#     padding: 24px;
#     background: #ffffff;
#     border-radius: 18px;
#     box-shadow: 0 10px 30px rgba(0, 0, 0, 0.08);
#     # border: 2px solid #C2C5EF;
#     border: 2px solid black;
#     position: relative;
#     z-index: 1;
#     overflow: visible;
# }

#main-container {
    width: 95%;
    max-width: 1100px;
    margin: 20px auto;
    padding: 24px;
    background: #ffffff;
    border-radius: 18px;
    box-shadow: 0 10px 30px rgba(0, 0, 0, 0.08);
    # border: 2px solid #C2C5EF;
    border: 2px solid black;
    
}



/* === Card Containers === */
.gr-box, .gr-block, .gr-column, .gr-row, .gr-tab {
    background-color: #C2C5EF !important;
    color: #22284F !important;
    border-radius: 12px;
    padding: 16px !important;
    box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05);
}

/* === Headings === */
h1, .gr-markdown h1 {
    font-size: 2.2rem !important;
    font-weight: bold;
    color: #22284F;
    text-align: center;
    margin-bottom: 1rem;
}

/* === Inputs === */
input[type="text"],
.gr-textbox textarea,
.gr-dropdown,
.gr-slider {
    background-color: #C2C5EF !important;
    color: #22284F !important;
    border-radius: 8px;
    border: 1px solid #999 !important;
    padding: 10px !important;
    font-size: 16px;
    box-shadow: inset 0 1px 3px rgba(0, 0, 0, 0.05);
}

/* === Gallery Grid === */
.gr-gallery {
    padding-top: 12px;
    overflow-y: auto;
}
.gr-gallery-item {
    width: 128px !important;
    height: 128px !important;
    border-radius: 8px;
    overflow: hidden;
    background-color: #C2C5EF;
    color: #22284F;
    transition: transform 0.3s ease-in-out;
}
.gr-gallery-item:hover {
    transform: scale(1.06);
    box-shadow: 0 3px 12px rgba(0, 0, 0, 0.15);
}
.gr-gallery-item img {
    object-fit: cover;
    width: 100%;
    height: 100%;
    border-radius: 8px;
}

/* === Audio & Image === */
.gr-audio, .gr-image {
    width: 100% !important;
    max-width: 500px !important;
    margin: 0 auto;
    border-radius: 12px;
    background-color: #C2C5EF !important;
    color: #22284F !important;
    box-shadow: 0 1px 5px rgba(0, 0, 0, 0.1);
}

.gr-image {
    height: 256px !important;
}

/* === Buttons === */
.gr-button {
    background-image: linear-gradient(92.88deg, #455EB5 9.16%, #5643CC 43.89%, #673FD7 64.72%);
    color: #ffffff !important;
    border-radius: 8px;
    font-size: 16px;
    font-weight: 500;
    height: 3.5rem;
    padding: 0 1.5rem;
    border: none;
    box-shadow: rgba(80, 63, 205, 0.5) 0 1px 30px;
    transition: all 0.3s;
}
.gr-button:hover {
    transform: translateY(-2px);
    box-shadow: rgba(80, 63, 205, 0.8) 0 2px 20px;
}

/* === Tab Labels === */
button[role="tab"] {
    color: #22284F !important;
    font-weight: 500;
    font-size: 16px;
}
button[role="tab"][aria-selected="true"] {
    color: #f57c00 !important;
    font-weight: bold;
}
button[role="tab"]:hover {
    color: #f57c00 !important;
    font-weight: 600;
    cursor: pointer;
}

/* === Footer === */
.gr-markdown:last-child {
    text-align: center;
    font-size: 14px;
    color: #666;
    padding-top: 1rem;
}

/* === Responsive === */
@media (max-width: 768px) {
    #main-container {
        width: 100%;
        margin: 8px;
        padding: 12px;
    }

    .gr-button {
        font-size: 14px;
        height: 3.2rem;
    }

    input[type="text"], .gr-textbox textarea, .gr-dropdown, .gr-slider {
        font-size: 14px;
        padding: 8px !important;
    }

    h1, .gr-markdown h1 {
        font-size: 1.6rem !important;
    }

    .gr-gallery-item {
        width: 100px !important;
        height: 100px !important;
    }

    .gr-image {
        height: auto !important;
    }
}

"""



with gr.Blocks(css=custom_css) as demo:
  with gr.Column(elem_id="app-bg"):
    with gr.Column(elem_id="main-container"):
      gr.Markdown("# πŸ›οΈ Fashion Product Hybrid Search")

      alpha = gr.Slider(0, 1, value=0.5, label="Hybrid Weight (alpha: 0=sparse, 1=dense)")

      with gr.Tabs():
          with gr.Tab("Text Search"):
              query = gr.Textbox(
                  label="Text Query",
                  placeholder="e.g., floral summer dress for women"
              )
              gender_dropdown = gr.Dropdown(
                  ["", "Men", "Women", "Boys", "Girls", "Kids", "Unisex"],
                  label="Gender Filter (optional)"
              )
              text_search_btn = gr.Button("Search by Text", elem_classes="search-btn")
          with gr.Tab("πŸŽ™οΈ Voice Search"):
            voice_input = gr.Audio(label="Speak Your Query", type="filepath")
            voice_gender_dropdown = gr.Dropdown(["", "Men", "Women", "Boys", "Girls", "Kids", "Unisex"], label="Gender")
            voice_search_btn = gr.Button("Search by Voice")


          with gr.Tab("Image Search"):
              # image_input = gr.Image(
              #     type="pil",
              #     label="Upload an image",
              #     sources=["upload", "clipboard"],
              #     height=256,
              #     width=356
              # )
              image_input = gr.Image(
                type="pil",
                label="Upload an image",
                sources=["upload", "clipboard"],
                # tool=None,
                height=400
              )

              image_gender_dropdown = gr.Dropdown(
                  ["", "Men", "Women", "Boys", "Girls", "Kids", "Unisex"],
                  label="Gender Filter (optional)"
              )
              image_search_btn = gr.Button("Search by Image", elem_classes="search-btn")

      gallery = gr.Gallery(label="Search Results", columns=6, height=None)
      load_more_btn = gr.Button("Load More")

    # --- UI State Holders ---
      search_offset = gr.State(0)
      current_query = gr.State("")
      current_image = gr.State(None)
      current_gender = gr.State("")
      shown_results = gr.State([])
      shown_ids = gr.State(set())

    # --- Unified Search Function ---
    def unified_search(q, uploaded_image, a, offset, gender_ui):
        start = 0
        end = 12

        filters = extract_intent_from_openai(q) if q.strip() else {}
        gender_override = gender_ui if gender_ui else filters.get("gender")

        if uploaded_image is not None:
            results = search_by_image(uploaded_image, a, start, end)
        elif q.strip():
            results = search_fashion(q, a, start, end, gender_override)
        else:
            results = []

        seen_ids = {r[1] for r in results}
        return results, end, q, uploaded_image, gender_override, results, seen_ids

    # Text Search
    # Text Search
    text_search_btn.click(
      unified_search,
      inputs=[query, gr.State(None), alpha, search_offset, gender_dropdown],
      outputs=[gallery, search_offset, current_query, current_image, current_gender, shown_results, shown_ids]
    )

    voice_search_btn.click(
    handle_voice_search,
    inputs=[voice_input, alpha, search_offset, voice_gender_dropdown],
    outputs=[gallery, search_offset, current_query, current_image, current_gender, shown_results, shown_ids]
)

    # Image Search
    image_search_btn.click(
        unified_search,
        inputs=[gr.State(""), image_input, alpha, search_offset, image_gender_dropdown],
        outputs=[gallery, search_offset, current_query, current_image, current_gender, shown_results, shown_ids]
    )

    # --- Load More Button ---
    def load_more_fn(a, offset, q, img, gender_ui, prev_results, prev_ids):
        start = offset
        end = offset + 12
        gender_override = gender_ui

        if img is not None:
            new_results = search_by_image(img, a, start, end)
        elif q.strip():
            new_results = search_fashion(q, a, start, end, gender_override)
        else:
            new_results = []

        filtered_new = []
        new_ids = set()
        for item in new_results:
            img_obj, caption = item
            if caption not in prev_ids:
                filtered_new.append(item)
                new_ids.add(caption)

        combined = prev_results + filtered_new
        updated_ids = prev_ids.union(new_ids)

        return combined, end, combined, updated_ids

    load_more_btn.click(
        load_more_fn,
        inputs=[alpha, search_offset, current_query, current_image, current_gender, shown_results, shown_ids],
        outputs=[gallery, search_offset, shown_results, shown_ids]
    )

    # gr.Markdown("🧠 Powered by OpenAI + Hybrid AI Fashion Search")

demo.launch()