Spaces:
Running
on
Zero
Running
on
Zero
Upload 2 files
Browse files- api.py +271 -0
- main (1).py +14 -0
api.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
import trimesh
|
7 |
+
import random
|
8 |
+
from transformers import AutoModelForImageSegmentation
|
9 |
+
from torchvision import transforms
|
10 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
11 |
+
import subprocess
|
12 |
+
import shutil
|
13 |
+
from fastapi import FastAPI, HTTPException, Depends, File, UploadFile
|
14 |
+
from fastapi.security import APIKeyHeader
|
15 |
+
from fastapi.staticfiles import StaticFiles
|
16 |
+
from pydantic import BaseModel
|
17 |
+
import uvicorn
|
18 |
+
|
19 |
+
# Install additional dependencies
|
20 |
+
subprocess.run("pip install spandrel==0.4.1 --no-deps", shell=True, check=True)
|
21 |
+
subprocess.run("pip install fastapi uvicorn", shell=True, check=True)
|
22 |
+
|
23 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
DTYPE = torch.float16
|
25 |
+
|
26 |
+
print("DEVICE: ", DEVICE)
|
27 |
+
|
28 |
+
DEFAULT_FACE_NUMBER = 100000
|
29 |
+
MAX_SEED = np.iinfo(np.int32).max
|
30 |
+
TRIPOSG_REPO_URL = "https://github.com/VAST-AI-Research/TripoSG.git"
|
31 |
+
MV_ADAPTER_REPO_URL = "https://github.com/huanngzh/MV-Adapter.git"
|
32 |
+
|
33 |
+
RMBG_PRETRAINED_MODEL = "checkpoints/RMBG-1.4"
|
34 |
+
TRIPOSG_PRETRAINED_MODEL = "checkpoints/TripoSG"
|
35 |
+
|
36 |
+
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
|
37 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
38 |
+
|
39 |
+
TRIPOSG_CODE_DIR = "./triposg"
|
40 |
+
if not os.path.exists(TRIPOSG_CODE_DIR):
|
41 |
+
os.system(f"git clone {TRIPOSG_REPO_URL} {TRIPOSG_CODE_DIR}")
|
42 |
+
|
43 |
+
MV_ADAPTER_CODE_DIR = "./mv_adapter"
|
44 |
+
if not os.path.exists(MV_ADAPTER_CODE_DIR):
|
45 |
+
os.system(f"git clone {MV_ADAPTER_REPO_URL} {MV_ADAPTER_CODE_DIR} && cd {MV_ADAPTER_CODE_DIR} && git checkout 7d37a97e9bc223cdb8fd26a76bd8dd46504c7c3d")
|
46 |
+
|
47 |
+
import sys
|
48 |
+
sys.path.append(TRIPOSG_CODE_DIR)
|
49 |
+
sys.path.append(os.path.join(TRIPOSG_CODE_DIR, "scripts"))
|
50 |
+
sys.path.append(MV_ADAPTER_CODE_DIR)
|
51 |
+
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))
|
52 |
+
|
53 |
+
# triposg
|
54 |
+
from image_process import prepare_image
|
55 |
+
from briarmbg import BriaRMBG
|
56 |
+
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
|
57 |
+
rmbg_net = BriaRMBG.from_pretrained(RMBG_PRETRAINED_MODEL).to(DEVICE)
|
58 |
+
rmbg_net.eval()
|
59 |
+
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
60 |
+
snapshot_download("VAST-AI/TripoSG", local_dir=TRIPOSG_PRETRAINED_MODEL)
|
61 |
+
triposg_pipe = TripoSGPipeline.from_pretrained(TRIPOSG_PRETRAINED_MODEL).to(DEVICE, DTYPE)
|
62 |
+
|
63 |
+
# mv adapter
|
64 |
+
NUM_VIEWS = 6
|
65 |
+
from inference_ig2mv_sdxl import prepare_pipeline, preprocess_image, remove_bg
|
66 |
+
from mvadapter.utils import get_orthogonal_camera, tensor_to_image, make_image_grid
|
67 |
+
from mvadapter.utils.render import NVDiffRastContextWrapper, load_mesh, render
|
68 |
+
mv_adapter_pipe = prepare_pipeline(
|
69 |
+
base_model="stabilityai/stable-diffusion-xl-base-1.0",
|
70 |
+
vae_model="madebyollin/sdxl-vae-fp16-fix",
|
71 |
+
unet_model=None,
|
72 |
+
lora_model=None,
|
73 |
+
adapter_path="huanngzh/mv-adapter",
|
74 |
+
scheduler=None,
|
75 |
+
num_views=NUM_VIEWS,
|
76 |
+
device=DEVICE,
|
77 |
+
dtype=torch.float16,
|
78 |
+
)
|
79 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
80 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
81 |
+
).to(DEVICE)
|
82 |
+
transform_image = transforms.Compose(
|
83 |
+
[
|
84 |
+
transforms.Resize((1024, 1024)),
|
85 |
+
transforms.ToTensor(),
|
86 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
87 |
+
]
|
88 |
+
)
|
89 |
+
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, DEVICE)
|
90 |
+
|
91 |
+
if not os.path.exists("checkpoints/RealESRGAN_x2plus.pth"):
|
92 |
+
hf_hub_download("dtarnow/UPscaler", filename="RealESRGAN_x2plus.pth", local_dir="checkpoints")
|
93 |
+
if not os.path.exists("checkpoints/big-lama.pt"):
|
94 |
+
subprocess.run("wget -P checkpoints/ https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt", shell=True, check=True)
|
95 |
+
|
96 |
+
# Initialize FastAPI app
|
97 |
+
app = FastAPI()
|
98 |
+
|
99 |
+
# Mount static files for serving generated models
|
100 |
+
app.mount("/files", StaticFiles(directory=TMP_DIR), name="files")
|
101 |
+
|
102 |
+
# API key authentication
|
103 |
+
api_key_header = APIKeyHeader(name="X-API-Key")
|
104 |
+
VALID_API_KEY = os.getenv("POLYGENIX_API_KEY", "your-secret-api-key")
|
105 |
+
|
106 |
+
async def verify_api_key(api_key: str = Depends(api_key_header)):
|
107 |
+
if api_key != VALID_API_KEY:
|
108 |
+
raise HTTPException(status_code=401, detail="Invalid API key")
|
109 |
+
return api_key
|
110 |
+
|
111 |
+
# API request model
|
112 |
+
class GenerateRequest(BaseModel):
|
113 |
+
seed: int = 0
|
114 |
+
num_inference_steps: int = 50
|
115 |
+
guidance_scale: float = 7.5
|
116 |
+
simplify: bool = True
|
117 |
+
target_face_num: int = DEFAULT_FACE_NUMBER
|
118 |
+
|
119 |
+
# Test endpoint
|
120 |
+
@app.get("/api/test")
|
121 |
+
async def test_endpoint():
|
122 |
+
return {"message": "FastAPI is running"}
|
123 |
+
|
124 |
+
def get_random_hex():
|
125 |
+
random_bytes = os.urandom(8)
|
126 |
+
random_hex = random_bytes.hex()
|
127 |
+
return random_hex
|
128 |
+
|
129 |
+
@spaces.GPU(duration=180)
|
130 |
+
def run_full(image: str, req=None):
|
131 |
+
seed = 0
|
132 |
+
num_inference_steps = 50
|
133 |
+
guidance_scale = 7.5
|
134 |
+
simplify = True
|
135 |
+
target_face_num = DEFAULT_FACE_NUMBER
|
136 |
+
|
137 |
+
image_seg = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
138 |
+
|
139 |
+
outputs = triposg_pipe(
|
140 |
+
image=image_seg,
|
141 |
+
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
142 |
+
num_inference_steps=num_inference_steps,
|
143 |
+
guidance_scale=guidance_scale
|
144 |
+
).samples[0]
|
145 |
+
print("mesh extraction done")
|
146 |
+
mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))
|
147 |
+
|
148 |
+
if simplify:
|
149 |
+
print("start simplify")
|
150 |
+
from utils import simplify_mesh
|
151 |
+
mesh = simplify_mesh(mesh, target_face_num)
|
152 |
+
|
153 |
+
save_dir = os.path.join(TMP_DIR, "examples")
|
154 |
+
os.makedirs(save_dir, exist_ok=True)
|
155 |
+
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
|
156 |
+
mesh.export(mesh_path)
|
157 |
+
print("save to ", mesh_path)
|
158 |
+
|
159 |
+
torch.cuda.empty_cache()
|
160 |
+
|
161 |
+
height, width = 768, 768
|
162 |
+
cameras = get_orthogonal_camera(
|
163 |
+
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
164 |
+
distance=[1.8] * NUM_VIEWS,
|
165 |
+
left=-0.55,
|
166 |
+
right=0.55,
|
167 |
+
bottom=-0.55,
|
168 |
+
top=0.55,
|
169 |
+
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
170 |
+
device=DEVICE,
|
171 |
+
)
|
172 |
+
ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")
|
173 |
+
|
174 |
+
mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
|
175 |
+
render_out = render(
|
176 |
+
ctx,
|
177 |
+
mesh,
|
178 |
+
cameras,
|
179 |
+
height=height,
|
180 |
+
width=width,
|
181 |
+
render_attr=False,
|
182 |
+
normal_background=0.0,
|
183 |
+
)
|
184 |
+
control_images = (
|
185 |
+
torch.cat(
|
186 |
+
[
|
187 |
+
(render_out.pos + 0.5).clamp(0, 1),
|
188 |
+
(render_out.normal / 2 + 0.5).clamp(0, 1),
|
189 |
+
],
|
190 |
+
dim=-1,
|
191 |
+
)
|
192 |
+
.permute(0, 3, 1, 2)
|
193 |
+
.to(DEVICE)
|
194 |
+
)
|
195 |
+
|
196 |
+
image = Image.open(image)
|
197 |
+
image = remove_bg_fn(image)
|
198 |
+
image = preprocess_image(image, height, width)
|
199 |
+
|
200 |
+
pipe_kwargs = {}
|
201 |
+
if seed != -1 and isinstance(seed, int):
|
202 |
+
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
203 |
+
|
204 |
+
images = mv_adapter_pipe(
|
205 |
+
"high quality",
|
206 |
+
height=height,
|
207 |
+
width=width,
|
208 |
+
num_inference_steps=15,
|
209 |
+
guidance_scale=3.0,
|
210 |
+
num_images_per_prompt=NUM_VIEWS,
|
211 |
+
control_image=control_images,
|
212 |
+
control_conditioning_scale=1.0,
|
213 |
+
reference_image=image,
|
214 |
+
reference_conditioning_scale=1.0,
|
215 |
+
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
216 |
+
cross_attention_kwargs={"scale": 1.0},
|
217 |
+
**pipe_kwargs,
|
218 |
+
).images
|
219 |
+
|
220 |
+
torch.cuda.empty_cache()
|
221 |
+
|
222 |
+
mv_image_path = os.path.join(save_dir, f"polygenixai_mv_{get_random_hex()}.png")
|
223 |
+
make_image_grid(images, rows=1).save(mv_image_path)
|
224 |
+
|
225 |
+
from texture import TexturePipeline, ModProcessConfig
|
226 |
+
texture_pipe = TexturePipeline(
|
227 |
+
upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
|
228 |
+
inpaint_ckpt_path="checkpoints/big-lama.pt",
|
229 |
+
device=DEVICE,
|
230 |
+
)
|
231 |
+
|
232 |
+
textured_glb_path = texture_pipe(
|
233 |
+
mesh_path=mesh_path,
|
234 |
+
save_dir=save_dir,
|
235 |
+
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
|
236 |
+
uv_unwarp=True,
|
237 |
+
uv_size=4096,
|
238 |
+
rgb_path=mv_image_path,
|
239 |
+
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
240 |
+
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
241 |
+
)
|
242 |
+
|
243 |
+
return image_seg, mesh_path, textured_glb_path
|
244 |
+
|
245 |
+
# FastAPI endpoint for generating 3D models
|
246 |
+
@app.post("/api/generate")
|
247 |
+
async def generate_3d_model(request: GenerateRequest, image: UploadFile = File(...), api_key: str = Depends(verify_api_key)):
|
248 |
+
try:
|
249 |
+
# Save uploaded image to temporary directory
|
250 |
+
session_hash = get_random_hex()
|
251 |
+
save_dir = os.path.join(TMP_DIR, session_hash)
|
252 |
+
os.makedirs(save_dir, exist_ok=True)
|
253 |
+
image_path = os.path.join(save_dir, f"input_{get_random_hex()}.png")
|
254 |
+
with open(image_path, "wb") as f:
|
255 |
+
f.write(await image.read())
|
256 |
+
|
257 |
+
# Run the full pipeline
|
258 |
+
image_seg, mesh_path, textured_glb_path = run_full(image_path, req=None)
|
259 |
+
|
260 |
+
# Return the file URL for the textured GLB
|
261 |
+
file_url = f"/files/{session_hash}/{os.path.basename(textured_glb_path)}"
|
262 |
+
return {"file_url": file_url}
|
263 |
+
except Exception as e:
|
264 |
+
raise HTTPException(status_code=500, detail=str(e))
|
265 |
+
finally:
|
266 |
+
# Clean up temporary directory
|
267 |
+
if os.path.exists(save_dir):
|
268 |
+
shutil.rmtree(save_dir)
|
269 |
+
|
270 |
+
if __name__ == "__main__":
|
271 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
main (1).py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import uvicorn
|
3 |
+
from app import demo
|
4 |
+
from api import app
|
5 |
+
|
6 |
+
async def run_servers():
|
7 |
+
config = uvicorn.Config(app=app, host="0.0.0.0", port=8000)
|
8 |
+
server = uvicorn.Server(config)
|
9 |
+
fastapi_task = asyncio.create_task(server.serve())
|
10 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
11 |
+
await fastapi_task
|
12 |
+
|
13 |
+
if __name__ == "__main__":
|
14 |
+
asyncio.run(run_servers())
|