Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -8,11 +8,14 @@ import trimesh
|
|
8 |
import random
|
9 |
from transformers import AutoModelForImageSegmentation
|
10 |
from torchvision import transforms
|
11 |
-
from huggingface_hub import hf_hub_download, snapshot_download
|
12 |
import subprocess
|
13 |
import shutil
|
14 |
import base64
|
15 |
import logging
|
|
|
|
|
|
|
16 |
|
17 |
# Set up logging
|
18 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
@@ -25,12 +28,15 @@ except Exception as e:
|
|
25 |
logger.error(f"Failed to install spandrel: {str(e)}")
|
26 |
raise
|
27 |
|
|
|
|
|
|
|
28 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
DTYPE = torch.float16
|
30 |
|
31 |
-
logger.info(f"Using device: {DEVICE}")
|
32 |
|
33 |
-
DEFAULT_FACE_NUMBER =
|
34 |
MAX_SEED = np.iinfo(np.int32).max
|
35 |
TRIPOSG_REPO_URL = "https://github.com/VAST-AI-Research/TripoSG.git"
|
36 |
MV_ADAPTER_REPO_URL = "https://github.com/huanngzh/MV-Adapter.git"
|
@@ -93,7 +99,7 @@ try:
|
|
93 |
).to(DEVICE)
|
94 |
transform_image = transforms.Compose(
|
95 |
[
|
96 |
-
transforms.Resize((
|
97 |
transforms.ToTensor(),
|
98 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
99 |
]
|
@@ -117,10 +123,57 @@ def get_random_hex():
|
|
117 |
random_hex = random_bytes.hex()
|
118 |
return random_hex
|
119 |
|
120 |
-
|
121 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
try:
|
|
|
|
|
|
|
123 |
image_seg = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
|
|
|
|
124 |
|
125 |
outputs = triposg_pipe(
|
126 |
image=image_seg,
|
@@ -141,10 +194,11 @@ def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_
|
|
141 |
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
|
142 |
mesh.export(mesh_path)
|
143 |
logger.info(f"Saved mesh to {mesh_path}")
|
|
|
144 |
|
145 |
torch.cuda.empty_cache()
|
146 |
|
147 |
-
height, width =
|
148 |
cameras = get_orthogonal_camera(
|
149 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
150 |
distance=[1.8] * NUM_VIEWS,
|
@@ -187,11 +241,12 @@ def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_
|
|
187 |
if seed != -1 and isinstance(seed, int):
|
188 |
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
189 |
|
|
|
190 |
images = mv_adapter_pipe(
|
191 |
-
|
192 |
height=height,
|
193 |
width=width,
|
194 |
-
num_inference_steps=
|
195 |
guidance_scale=3.0,
|
196 |
num_images_per_prompt=NUM_VIEWS,
|
197 |
control_image=control_images,
|
@@ -204,6 +259,7 @@ def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_
|
|
204 |
).images
|
205 |
|
206 |
torch.cuda.empty_cache()
|
|
|
207 |
os.makedirs(save_dir, exist_ok=True)
|
208 |
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
209 |
make_image_grid(images, rows=1).save(mv_image_path)
|
@@ -220,18 +276,19 @@ def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_
|
|
220 |
save_dir=save_dir,
|
221 |
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
|
222 |
uv_unwarp=True,
|
223 |
-
uv_size=
|
224 |
rgb_path=mv_image_path,
|
225 |
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
226 |
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
227 |
)
|
228 |
|
|
|
229 |
return image_seg, mesh_path, textured_glb_path
|
230 |
except Exception as e:
|
231 |
logger.error(f"Error in run_full: {str(e)}")
|
232 |
raise
|
233 |
|
234 |
-
def gradio_generate(image: str, seed: int = 0, num_inference_steps: int =
|
235 |
try:
|
236 |
logger.info("Starting gradio_generate")
|
237 |
# Verify API key
|
@@ -255,7 +312,7 @@ def gradio_generate(image: str, seed: int = 0, num_inference_steps: int = 50, gu
|
|
255 |
logger.error(f"Image file not found: {temp_image_path}")
|
256 |
raise ValueError("Invalid or missing image file")
|
257 |
|
258 |
-
image_seg, mesh_path, textured_glb_path = run_full(temp_image_path, seed, num_inference_steps, guidance_scale, simplify, target_face_num, req=None)
|
259 |
session_hash = os.path.basename(os.path.dirname(textured_glb_path))
|
260 |
logger.info(f"Generated model at /files/{session_hash}/{os.path.basename(textured_glb_path)}")
|
261 |
return {"file_url": f"/files/{session_hash}/{os.path.basename(textured_glb_path)}"}
|
@@ -291,7 +348,6 @@ def get_random_seed(randomize_seed, seed):
|
|
291 |
logger.error(f"Error in get_random_seed: {str(e)}")
|
292 |
raise
|
293 |
|
294 |
-
|
295 |
def download_image(url: str, save_path: str) -> str:
|
296 |
"""Download an image from a URL and save it locally."""
|
297 |
try:
|
@@ -307,7 +363,7 @@ def download_image(url: str, save_path: str) -> str:
|
|
307 |
logger.error(f"Failed to download image from {url}: {str(e)}")
|
308 |
raise
|
309 |
|
310 |
-
@
|
311 |
@torch.no_grad()
|
312 |
def run_segmentation(image):
|
313 |
try:
|
@@ -332,15 +388,17 @@ def run_segmentation(image):
|
|
332 |
|
333 |
image = prepare_image(image_path, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
334 |
logger.info("Segmentation complete")
|
|
|
335 |
return image
|
336 |
except Exception as e:
|
337 |
logger.error(f"Error in run_segmentation: {str(e)}")
|
338 |
raise
|
339 |
|
340 |
-
@
|
|
|
341 |
@torch.no_grad()
|
342 |
def image_to_3d(
|
343 |
-
image,
|
344 |
seed: int,
|
345 |
num_inference_steps: int,
|
346 |
guidance_scale: float,
|
@@ -350,6 +408,8 @@ def image_to_3d(
|
|
350 |
):
|
351 |
try:
|
352 |
logger.info("Running image_to_3d")
|
|
|
|
|
353 |
# Handle FileData dict from gradio_client
|
354 |
if isinstance(image, dict):
|
355 |
image_path = image.get("path") or image.get("url")
|
@@ -384,6 +444,7 @@ def image_to_3d(
|
|
384 |
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
|
385 |
mesh.export(mesh_path)
|
386 |
logger.info(f"Saved mesh to {mesh_path}")
|
|
|
387 |
|
388 |
torch.cuda.empty_cache()
|
389 |
return mesh_path
|
@@ -391,12 +452,15 @@ def image_to_3d(
|
|
391 |
logger.error(f"Error in image_to_3d: {str(e)}")
|
392 |
raise
|
393 |
|
394 |
-
@
|
|
|
395 |
@torch.no_grad()
|
396 |
-
def run_texture(image
|
397 |
try:
|
398 |
-
logger.info("Running texture generation")
|
399 |
-
|
|
|
|
|
400 |
cameras = get_orthogonal_camera(
|
401 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
402 |
distance=[1.8] * NUM_VIEWS,
|
@@ -431,7 +495,16 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
431 |
.to(DEVICE)
|
432 |
)
|
433 |
|
434 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
image = remove_bg_fn(image)
|
436 |
image = preprocess_image(image, height, width)
|
437 |
|
@@ -439,11 +512,12 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
439 |
if seed != -1 and isinstance(seed, int):
|
440 |
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
441 |
|
|
|
442 |
images = mv_adapter_pipe(
|
443 |
-
|
444 |
height=height,
|
445 |
width=width,
|
446 |
-
num_inference_steps=
|
447 |
guidance_scale=3.0,
|
448 |
num_images_per_prompt=NUM_VIEWS,
|
449 |
control_image=control_images,
|
@@ -456,6 +530,7 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
456 |
).images
|
457 |
|
458 |
torch.cuda.empty_cache()
|
|
|
459 |
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
460 |
os.makedirs(save_dir, exist_ok=True)
|
461 |
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
@@ -473,7 +548,7 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
473 |
save_dir=save_dir,
|
474 |
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
|
475 |
uv_unwarp=True,
|
476 |
-
uv_size=
|
477 |
rgb_path=mv_image_path,
|
478 |
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
479 |
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
@@ -485,11 +560,14 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
485 |
logger.error(f"Error in run_texture: {str(e)}")
|
486 |
raise
|
487 |
|
488 |
-
@
|
|
|
489 |
@torch.no_grad()
|
490 |
-
def run_full_api(image, seed: int = 0, num_inference_steps: int =
|
491 |
try:
|
492 |
logger.info("Running run_full_api")
|
|
|
|
|
493 |
# Handle FileData dict or URL
|
494 |
if isinstance(image, dict):
|
495 |
image_path = image.get("path") or image.get("url")
|
@@ -508,10 +586,10 @@ def run_full_api(image, seed: int = 0, num_inference_steps: int = 50, guidance_s
|
|
508 |
logger.error(f"Invalid image path: {image_path}")
|
509 |
raise ValueError(f"Invalid image path: {image_path}")
|
510 |
|
511 |
-
image_seg, mesh_path, textured_glb_path = run_full(image_path, seed, num_inference_steps, guidance_scale, simplify, target_face_num, req)
|
512 |
session_hash = os.path.basename(os.path.dirname(textured_glb_path))
|
513 |
logger.info(f"Generated textured model at /files/{session_hash}/{os.path.basename(textured_glb_path)}")
|
514 |
-
return
|
515 |
except Exception as e:
|
516 |
logger.error(f"Error in run_full_api: {str(e)}")
|
517 |
raise
|
@@ -524,10 +602,15 @@ try:
|
|
524 |
inputs=[
|
525 |
gr.Image(type="filepath", label="Image"),
|
526 |
gr.Number(label="Seed", value=0, precision=0),
|
527 |
-
gr.Number(label="Inference Steps", value=
|
528 |
gr.Number(label="Guidance Scale", value=7.5),
|
529 |
gr.Checkbox(label="Simplify Mesh", value=True),
|
530 |
-
gr.Number(label="Target Face Number", value=DEFAULT_FACE_NUMBER, precision=0)
|
|
|
|
|
|
|
|
|
|
|
531 |
],
|
532 |
outputs="json",
|
533 |
api_name="/api/generate"
|
@@ -653,7 +736,7 @@ try:
|
|
653 |
minimum=8,
|
654 |
maximum=50,
|
655 |
step=1,
|
656 |
-
value=
|
657 |
info="Higher steps enhance detail but increase processing time",
|
658 |
elem_classes="gr-slider"
|
659 |
)
|
@@ -689,7 +772,7 @@ try:
|
|
689 |
for image in os.listdir(f"{TRIPOSG_CODE_DIR}/assets/example_data")
|
690 |
],
|
691 |
fn=run_full,
|
692 |
-
inputs=[image_prompts],
|
693 |
outputs=[seg_image, model_output, textured_model_output],
|
694 |
cache_examples=True,
|
695 |
)
|
@@ -716,7 +799,7 @@ try:
|
|
716 |
).then(lambda: gr.Button(interactive=True), outputs=[gen_texture_button])
|
717 |
gen_texture_button.click(
|
718 |
run_texture,
|
719 |
-
inputs=[image_prompts, model_output, seed],
|
720 |
outputs=[textured_model_output]
|
721 |
)
|
722 |
demo.load(start_session)
|
|
|
8 |
import random
|
9 |
from transformers import AutoModelForImageSegmentation
|
10 |
from torchvision import transforms
|
11 |
+
from huggingface_hub import hf_hub_download, snapshot_download, HfApi
|
12 |
import subprocess
|
13 |
import shutil
|
14 |
import base64
|
15 |
import logging
|
16 |
+
import requests
|
17 |
+
from functools import wraps
|
18 |
+
import time
|
19 |
|
20 |
# Set up logging
|
21 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
28 |
logger.error(f"Failed to install spandrel: {str(e)}")
|
29 |
raise
|
30 |
|
31 |
+
# Check if running in ZeroGPU environment
|
32 |
+
IS_ZEROGPU = os.getenv("HF_ZERO_SPACE", "0") == "1"
|
33 |
+
|
34 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
DTYPE = torch.float16
|
36 |
|
37 |
+
logger.info(f"Using device: {DEVICE}, ZeroGPU: {IS_ZEROGPU}")
|
38 |
|
39 |
+
DEFAULT_FACE_NUMBER = 50000 # Reduced for L4 and ZeroGPU
|
40 |
MAX_SEED = np.iinfo(np.int32).max
|
41 |
TRIPOSG_REPO_URL = "https://github.com/VAST-AI-Research/TripoSG.git"
|
42 |
MV_ADAPTER_REPO_URL = "https://github.com/huanngzh/MV-Adapter.git"
|
|
|
99 |
).to(DEVICE)
|
100 |
transform_image = transforms.Compose(
|
101 |
[
|
102 |
+
transforms.Resize((512, 512)), # Reduced for L4 and ZeroGPU
|
103 |
transforms.ToTensor(),
|
104 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
105 |
]
|
|
|
123 |
random_hex = random_bytes.hex()
|
124 |
return random_hex
|
125 |
|
126 |
+
# Retry decorator for GPU tasks
|
127 |
+
def retry_on_gpu_abort(max_attempts=3, delay=5):
|
128 |
+
def decorator(func):
|
129 |
+
@wraps(func)
|
130 |
+
def wrapper(*args, **kwargs):
|
131 |
+
attempts = 0
|
132 |
+
while attempts < max_attempts:
|
133 |
+
try:
|
134 |
+
return func(*args, **kwargs)
|
135 |
+
except gr.Error as e:
|
136 |
+
if "GPU task aborted" in str(e):
|
137 |
+
attempts += 1
|
138 |
+
logger.warning(f"GPU task aborted, retrying {attempts}/{max_attempts}")
|
139 |
+
time.sleep(delay)
|
140 |
+
else:
|
141 |
+
raise
|
142 |
+
raise gr.Error("Max retries reached for GPU task")
|
143 |
+
return wrapper
|
144 |
+
return decorator
|
145 |
+
|
146 |
+
# Quota check for ZeroGPU
|
147 |
+
def check_quota():
|
148 |
+
if not IS_ZEROGPU:
|
149 |
+
return True
|
150 |
+
hf_api = HfApi()
|
151 |
+
try:
|
152 |
+
quota = hf_api.get_space_runtime(token=os.getenv("HF_TOKEN"))
|
153 |
+
logger.info(f"Remaining ZeroGPU quota: {quota}")
|
154 |
+
return quota.get("gpu_quota_remaining", 0) > 60
|
155 |
+
except Exception as e:
|
156 |
+
logger.error(f"Failed to check quota: {str(e)}")
|
157 |
+
return False
|
158 |
+
|
159 |
+
# Conditional GPU decorator
|
160 |
+
def conditional_gpu_decorator(duration=None):
|
161 |
+
def decorator(func):
|
162 |
+
if IS_ZEROGPU:
|
163 |
+
return spaces.GPU(duration=duration)(func) if duration else spaces.GPU()(func)
|
164 |
+
return func
|
165 |
+
return decorator
|
166 |
+
|
167 |
+
@conditional_gpu_decorator(duration=10)
|
168 |
+
@retry_on_gpu_abort(max_attempts=3, delay=5)
|
169 |
+
def run_full(image: str, seed: int = 0, num_inference_steps: int = 30, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, req=None, style_filter: str = "None"):
|
170 |
try:
|
171 |
+
logger.info(f"Starting run_full with image: {image}, seed: {seed}, style: {style_filter}")
|
172 |
+
if not check_quota():
|
173 |
+
raise gr.Error("Insufficient GPU quota remaining")
|
174 |
image_seg = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
175 |
+
logger.info("Image segmentation completed")
|
176 |
+
logger.info(f"VRAM usage after segmentation: {torch.cuda.memory_allocated(DEVICE)/1e9:.2f} GB")
|
177 |
|
178 |
outputs = triposg_pipe(
|
179 |
image=image_seg,
|
|
|
194 |
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
|
195 |
mesh.export(mesh_path)
|
196 |
logger.info(f"Saved mesh to {mesh_path}")
|
197 |
+
logger.info(f"VRAM usage after mesh generation: {torch.cuda.memory_allocated(DEVICE)/1e9:.2f} GB")
|
198 |
|
199 |
torch.cuda.empty_cache()
|
200 |
|
201 |
+
height, width = 512, 512 # Reduced for L4 and ZeroGPU
|
202 |
cameras = get_orthogonal_camera(
|
203 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
204 |
distance=[1.8] * NUM_VIEWS,
|
|
|
241 |
if seed != -1 and isinstance(seed, int):
|
242 |
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
243 |
|
244 |
+
prompt = f"high quality, {style_filter.lower()}" if style_filter != "None" else "high quality"
|
245 |
images = mv_adapter_pipe(
|
246 |
+
prompt,
|
247 |
height=height,
|
248 |
width=width,
|
249 |
+
num_inference_steps=10, # Reduced for L4 and ZeroGPU
|
250 |
guidance_scale=3.0,
|
251 |
num_images_per_prompt=NUM_VIEWS,
|
252 |
control_image=control_images,
|
|
|
259 |
).images
|
260 |
|
261 |
torch.cuda.empty_cache()
|
262 |
+
logger.info(f"VRAM usage after texture generation: {torch.cuda.memory_allocated(DEVICE)/1e9:.2f} GB")
|
263 |
os.makedirs(save_dir, exist_ok=True)
|
264 |
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
265 |
make_image_grid(images, rows=1).save(mv_image_path)
|
|
|
276 |
save_dir=save_dir,
|
277 |
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
|
278 |
uv_unwarp=True,
|
279 |
+
uv_size=2048, # Reduced for L4 and ZeroGPU
|
280 |
rgb_path=mv_image_path,
|
281 |
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
282 |
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
283 |
)
|
284 |
|
285 |
+
logger.info(f"run_full completed successfully, textured model saved to {textured_glb_path}")
|
286 |
return image_seg, mesh_path, textured_glb_path
|
287 |
except Exception as e:
|
288 |
logger.error(f"Error in run_full: {str(e)}")
|
289 |
raise
|
290 |
|
291 |
+
def gradio_generate(image: str, seed: int = 0, num_inference_steps: int = 30, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, style_filter: str = "None"):
|
292 |
try:
|
293 |
logger.info("Starting gradio_generate")
|
294 |
# Verify API key
|
|
|
312 |
logger.error(f"Image file not found: {temp_image_path}")
|
313 |
raise ValueError("Invalid or missing image file")
|
314 |
|
315 |
+
image_seg, mesh_path, textured_glb_path = run_full(temp_image_path, seed, num_inference_steps, guidance_scale, simplify, target_face_num, req=None, style_filter=style_filter)
|
316 |
session_hash = os.path.basename(os.path.dirname(textured_glb_path))
|
317 |
logger.info(f"Generated model at /files/{session_hash}/{os.path.basename(textured_glb_path)}")
|
318 |
return {"file_url": f"/files/{session_hash}/{os.path.basename(textured_glb_path)}"}
|
|
|
348 |
logger.error(f"Error in get_random_seed: {str(e)}")
|
349 |
raise
|
350 |
|
|
|
351 |
def download_image(url: str, save_path: str) -> str:
|
352 |
"""Download an image from a URL and save it locally."""
|
353 |
try:
|
|
|
363 |
logger.error(f"Failed to download image from {url}: {str(e)}")
|
364 |
raise
|
365 |
|
366 |
+
@conditional_gpu_decorator()
|
367 |
@torch.no_grad()
|
368 |
def run_segmentation(image):
|
369 |
try:
|
|
|
388 |
|
389 |
image = prepare_image(image_path, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
390 |
logger.info("Segmentation complete")
|
391 |
+
torch.cuda.empty_cache()
|
392 |
return image
|
393 |
except Exception as e:
|
394 |
logger.error(f"Error in run_segmentation: {str(e)}")
|
395 |
raise
|
396 |
|
397 |
+
@conditional_gpu_decorator(duration=5)
|
398 |
+
@retry_on_gpu_abort(max_attempts=3, delay=5)
|
399 |
@torch.no_grad()
|
400 |
def image_to_3d(
|
401 |
+
image,
|
402 |
seed: int,
|
403 |
num_inference_steps: int,
|
404 |
guidance_scale: float,
|
|
|
408 |
):
|
409 |
try:
|
410 |
logger.info("Running image_to_3d")
|
411 |
+
if not check_quota():
|
412 |
+
raise gr.Error("Insufficient GPU quota remaining")
|
413 |
# Handle FileData dict from gradio_client
|
414 |
if isinstance(image, dict):
|
415 |
image_path = image.get("path") or image.get("url")
|
|
|
444 |
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
|
445 |
mesh.export(mesh_path)
|
446 |
logger.info(f"Saved mesh to {mesh_path}")
|
447 |
+
logger.info(f"VRAM usage after mesh generation: {torch.cuda.memory_allocated(DEVICE)/1e9:.2f} GB")
|
448 |
|
449 |
torch.cuda.empty_cache()
|
450 |
return mesh_path
|
|
|
452 |
logger.error(f"Error in image_to_3d: {str(e)}")
|
453 |
raise
|
454 |
|
455 |
+
@conditional_gpu_decorator(duration=5)
|
456 |
+
@retry_on_gpu_abort(max_attempts=3, delay=5)
|
457 |
@torch.no_grad()
|
458 |
+
def run_texture(image, mesh_path: str, seed: int, req: gr.Request, style_filter: str = "None"):
|
459 |
try:
|
460 |
+
logger.info(f"Running texture generation with style: {style_filter}")
|
461 |
+
if not check_quota():
|
462 |
+
raise gr.Error("Insufficient GPU quota remaining")
|
463 |
+
height, width = 512, 512 # Reduced for L4 and ZeroGPU
|
464 |
cameras = get_orthogonal_camera(
|
465 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
466 |
distance=[1.8] * NUM_VIEWS,
|
|
|
495 |
.to(DEVICE)
|
496 |
)
|
497 |
|
498 |
+
# Handle both file path and PIL Image
|
499 |
+
if isinstance(image, str):
|
500 |
+
if image.startswith("http"):
|
501 |
+
temp_image_path = os.path.join(TMP_DIR, f"input_{get_random_hex()}.png")
|
502 |
+
image = download_image(image, temp_image_path)
|
503 |
+
image = Image.open(image)
|
504 |
+
elif not isinstance(image, Image.Image):
|
505 |
+
logger.error(f"Invalid image type: {type(image)}")
|
506 |
+
raise ValueError(f"Expected PIL Image or str (path/URL), got {type(image)}")
|
507 |
+
|
508 |
image = remove_bg_fn(image)
|
509 |
image = preprocess_image(image, height, width)
|
510 |
|
|
|
512 |
if seed != -1 and isinstance(seed, int):
|
513 |
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
514 |
|
515 |
+
prompt = f"high quality, {style_filter.lower()}" if style_filter != "None" else "high quality"
|
516 |
images = mv_adapter_pipe(
|
517 |
+
prompt,
|
518 |
height=height,
|
519 |
width=width,
|
520 |
+
num_inference_steps=10, # Reduced for L4 and ZeroGPU
|
521 |
guidance_scale=3.0,
|
522 |
num_images_per_prompt=NUM_VIEWS,
|
523 |
control_image=control_images,
|
|
|
530 |
).images
|
531 |
|
532 |
torch.cuda.empty_cache()
|
533 |
+
logger.info(f"VRAM usage after texture generation: {torch.cuda.memory_allocated(DEVICE)/1e9:.2f} GB")
|
534 |
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
535 |
os.makedirs(save_dir, exist_ok=True)
|
536 |
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
|
|
548 |
save_dir=save_dir,
|
549 |
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
|
550 |
uv_unwarp=True,
|
551 |
+
uv_size=2048, # Reduced for L4 and ZeroGPU
|
552 |
rgb_path=mv_image_path,
|
553 |
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
554 |
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
|
|
560 |
logger.error(f"Error in run_texture: {str(e)}")
|
561 |
raise
|
562 |
|
563 |
+
@conditional_gpu_decorator(duration=10)
|
564 |
+
@retry_on_gpu_abort(max_attempts=3, delay=5)
|
565 |
@torch.no_grad()
|
566 |
+
def run_full_api(image, seed: int = 0, num_inference_steps: int = 30, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, req: gr.Request = None, style_filter: str = "None"):
|
567 |
try:
|
568 |
logger.info("Running run_full_api")
|
569 |
+
if not check_quota():
|
570 |
+
raise gr.Error("Insufficient GPU quota remaining")
|
571 |
# Handle FileData dict or URL
|
572 |
if isinstance(image, dict):
|
573 |
image_path = image.get("path") or image.get("url")
|
|
|
586 |
logger.error(f"Invalid image path: {image_path}")
|
587 |
raise ValueError(f"Invalid image path: {image_path}")
|
588 |
|
589 |
+
image_seg, mesh_path, textured_glb_path = run_full(image_path, seed, num_inference_steps, guidance_scale, simplify, target_face_num, req, style_filter)
|
590 |
session_hash = os.path.basename(os.path.dirname(textured_glb_path))
|
591 |
logger.info(f"Generated textured model at /files/{session_hash}/{os.path.basename(textured_glb_path)}")
|
592 |
+
return image_seg, mesh_path, textured_glb_path
|
593 |
except Exception as e:
|
594 |
logger.error(f"Error in run_full_api: {str(e)}")
|
595 |
raise
|
|
|
602 |
inputs=[
|
603 |
gr.Image(type="filepath", label="Image"),
|
604 |
gr.Number(label="Seed", value=0, precision=0),
|
605 |
+
gr.Number(label="Inference Steps", value=30, precision=0),
|
606 |
gr.Number(label="Guidance Scale", value=7.5),
|
607 |
gr.Checkbox(label="Simplify Mesh", value=True),
|
608 |
+
gr.Number(label="Target Face Number", value=DEFAULT_FACE_NUMBER, precision=0),
|
609 |
+
gr.Dropdown(
|
610 |
+
choices=["None", "Realistic", "Fantasy", "Cartoon", "Sci-Fi", "Vintage", "Cosmic", "Neon"],
|
611 |
+
label="Style Filter",
|
612 |
+
value="None",
|
613 |
+
),
|
614 |
],
|
615 |
outputs="json",
|
616 |
api_name="/api/generate"
|
|
|
736 |
minimum=8,
|
737 |
maximum=50,
|
738 |
step=1,
|
739 |
+
value=30, # Reduced for L4 and ZeroGPU
|
740 |
info="Higher steps enhance detail but increase processing time",
|
741 |
elem_classes="gr-slider"
|
742 |
)
|
|
|
772 |
for image in os.listdir(f"{TRIPOSG_CODE_DIR}/assets/example_data")
|
773 |
],
|
774 |
fn=run_full,
|
775 |
+
inputs=[image_prompts, seed, num_inference_steps, guidance_scale, reduce_face, target_face_num, style_filter],
|
776 |
outputs=[seg_image, model_output, textured_model_output],
|
777 |
cache_examples=True,
|
778 |
)
|
|
|
799 |
).then(lambda: gr.Button(interactive=True), outputs=[gen_texture_button])
|
800 |
gen_texture_button.click(
|
801 |
run_texture,
|
802 |
+
inputs=[image_prompts, model_output, seed, style_filter],
|
803 |
outputs=[textured_model_output]
|
804 |
)
|
805 |
demo.load(start_session)
|