Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,9 @@ import os
|
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
-
from
|
7 |
import trimesh
|
8 |
import random
|
9 |
-
from PIL import Image
|
10 |
from transformers import AutoModelForImageSegmentation
|
11 |
from torchvision import transforms
|
12 |
from huggingface_hub import hf_hub_download, snapshot_download
|
@@ -14,9 +13,6 @@ import subprocess
|
|
14 |
import shutil
|
15 |
import base64
|
16 |
import logging
|
17 |
-
import time
|
18 |
-
import traceback
|
19 |
-
import requests
|
20 |
|
21 |
# Set up logging
|
22 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
@@ -26,7 +22,7 @@ logger = logging.getLogger(__name__)
|
|
26 |
try:
|
27 |
subprocess.run("pip install spandrel==0.4.1 --no-deps", shell=True, check=True)
|
28 |
except Exception as e:
|
29 |
-
logger.error(f"Failed to install spandrel: {str(e)}
|
30 |
raise
|
31 |
|
32 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -34,7 +30,7 @@ DTYPE = torch.float16
|
|
34 |
|
35 |
logger.info(f"Using device: {DEVICE}")
|
36 |
|
37 |
-
DEFAULT_FACE_NUMBER =
|
38 |
MAX_SEED = np.iinfo(np.int32).max
|
39 |
TRIPOSG_REPO_URL = "https://github.com/VAST-AI-Research/TripoSG.git"
|
40 |
MV_ADAPTER_REPO_URL = "https://github.com/huanngzh/MV-Adapter.git"
|
@@ -62,20 +58,22 @@ sys.path.append(MV_ADAPTER_CODE_DIR)
|
|
62 |
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))
|
63 |
|
64 |
try:
|
|
|
65 |
from image_process import prepare_image
|
66 |
from briarmbg import BriaRMBG
|
67 |
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
|
68 |
-
rmbg_net = BriaRMBG.from_pretrained(RMBG_PRETRAINED_MODEL).to(DEVICE
|
69 |
rmbg_net.eval()
|
70 |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
71 |
snapshot_download("VAST-AI/TripoSG", local_dir=TRIPOSG_PRETRAINED_MODEL)
|
72 |
-
triposg_pipe = TripoSGPipeline.from_pretrained(TRIPOSG_PRETRAINED_MODEL).to(DEVICE,
|
73 |
except Exception as e:
|
74 |
-
logger.error(f"Failed to load TripoSG models: {str(e)}
|
75 |
raise
|
76 |
|
77 |
try:
|
78 |
-
|
|
|
79 |
from inference_ig2mv_sdxl import prepare_pipeline, preprocess_image, remove_bg
|
80 |
from mvadapter.utils import get_orthogonal_camera, tensor_to_image, make_image_grid
|
81 |
from mvadapter.utils.render import NVDiffRastContextWrapper, load_mesh, render
|
@@ -92,17 +90,17 @@ try:
|
|
92 |
)
|
93 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
94 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
95 |
-
).to(DEVICE
|
96 |
transform_image = transforms.Compose(
|
97 |
[
|
98 |
-
transforms.Resize((
|
99 |
transforms.ToTensor(),
|
100 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
101 |
]
|
102 |
)
|
103 |
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, DEVICE)
|
104 |
except Exception as e:
|
105 |
-
logger.error(f"Failed to load MV-Adapter models: {str(e)}
|
106 |
raise
|
107 |
|
108 |
try:
|
@@ -111,201 +109,139 @@ try:
|
|
111 |
if not os.path.exists("checkpoints/big-lama.pt"):
|
112 |
subprocess.run("wget -P checkpoints/ https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt", shell=True, check=True)
|
113 |
except Exception as e:
|
114 |
-
logger.error(f"Failed to download checkpoints: {str(e)}
|
115 |
raise
|
116 |
|
117 |
-
def log_gpu_memory():
|
118 |
-
if torch.cuda.is_available():
|
119 |
-
allocated = torch.cuda.memory_allocated() / 1024**3
|
120 |
-
reserved = torch.cuda.memory_reserved() / 1024**3
|
121 |
-
logger.info(f"GPU Memory: Allocated {allocated:.2f} GB, Reserved {reserved:.2f} GB")
|
122 |
-
|
123 |
def get_random_hex():
|
124 |
random_bytes = os.urandom(8)
|
125 |
random_hex = random_bytes.hex()
|
126 |
return random_hex
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
try:
|
131 |
-
return func()
|
132 |
-
except RuntimeError as e:
|
133 |
-
logger.warning(f"Attempt {attempt + 1} failed: {str(e)}\n{traceback.format_exc()}")
|
134 |
-
if attempt == max_attempts - 1:
|
135 |
-
raise
|
136 |
-
time.sleep(delay)
|
137 |
-
|
138 |
-
@spaces.GPU(duration=2)
|
139 |
-
@torch.no_grad()
|
140 |
-
def run_segmentation(image):
|
141 |
try:
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
temp_image_path = os.path.join(TMP_DIR, f"input_{get_random_hex()}.png")
|
152 |
-
image_path = download_image(image, temp_image_path)
|
153 |
-
else:
|
154 |
-
image_path = image
|
155 |
-
if not isinstance(image, (str, bytes)) or (isinstance(image, str) and not os.path.exists(image)):
|
156 |
-
raise ValueError(f"Expected str (path/URL), bytes, or FileData dict, got {type(image)}")
|
157 |
-
|
158 |
-
with autocast():
|
159 |
-
image_seg = prepare_image(image_path, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
160 |
-
rmbg_net.to("cpu")
|
161 |
-
torch.cuda.empty_cache()
|
162 |
-
log_gpu_memory()
|
163 |
-
return image_seg
|
164 |
-
except Exception as e:
|
165 |
-
logger.error(f"Error in run_segmentation: {str(e)}\n{traceback.format_exc()}")
|
166 |
-
raise
|
167 |
-
|
168 |
-
@spaces.GPU(duration=3)
|
169 |
-
@torch.no_grad()
|
170 |
-
def image_to_3d(image, seed, num_inference_steps=30, guidance_scale=7.0, simplify=True, target_face_num=DEFAULT_FACE_NUMBER, req=None):
|
171 |
-
try:
|
172 |
-
log_gpu_memory()
|
173 |
-
triposg_pipe.to(DEVICE, dtype=DTYPE)
|
174 |
-
with autocast():
|
175 |
-
outputs = triposg_pipe(
|
176 |
-
image=image,
|
177 |
-
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
178 |
-
num_inference_steps=num_inference_steps,
|
179 |
-
guidance_scale=guidance_scale
|
180 |
-
).samples[0]
|
181 |
mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))
|
|
|
182 |
if simplify:
|
|
|
183 |
from utils import simplify_mesh
|
184 |
mesh = simplify_mesh(mesh, target_face_num)
|
185 |
-
|
|
|
186 |
os.makedirs(save_dir, exist_ok=True)
|
187 |
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
|
188 |
mesh.export(mesh_path)
|
189 |
-
|
|
|
190 |
torch.cuda.empty_cache()
|
191 |
-
log_gpu_memory()
|
192 |
-
return mesh_path
|
193 |
-
except Exception as e:
|
194 |
-
logger.error(f"Error in image_to_3d: {str(e)}\n{traceback.format_exc()}")
|
195 |
-
raise
|
196 |
|
197 |
-
|
198 |
-
@torch.no_grad()
|
199 |
-
def run_texture(image, mesh_path, seed, req=None):
|
200 |
-
try:
|
201 |
-
log_gpu_memory()
|
202 |
-
height, width = 512, 512
|
203 |
cameras = get_orthogonal_camera(
|
204 |
-
elevation_deg=[0, 0, 0, 89.99],
|
205 |
distance=[1.8] * NUM_VIEWS,
|
206 |
left=-0.55,
|
207 |
right=0.55,
|
208 |
bottom=-0.55,
|
209 |
top=0.55,
|
210 |
-
azimuth_deg=[x - 90 for x in [0, 90, 180, 180]],
|
211 |
device=DEVICE,
|
212 |
)
|
213 |
ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")
|
|
|
214 |
mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
)
|
225 |
control_images = (
|
226 |
torch.cat(
|
227 |
-
[
|
|
|
|
|
|
|
228 |
dim=-1,
|
229 |
)
|
230 |
.permute(0, 3, 1, 2)
|
231 |
.to(DEVICE)
|
232 |
)
|
233 |
-
|
234 |
image = Image.open(image)
|
235 |
-
|
236 |
-
with autocast():
|
237 |
-
image = remove_bg_fn(image)
|
238 |
-
birefnet.to("cpu")
|
239 |
image = preprocess_image(image, height, width)
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
261 |
os.makedirs(save_dir, exist_ok=True)
|
262 |
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
263 |
make_image_grid(images, rows=1).save(mv_image_path)
|
|
|
264 |
from texture import TexturePipeline, ModProcessConfig
|
265 |
texture_pipe = TexturePipeline(
|
266 |
upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
|
267 |
inpaint_ckpt_path="checkpoints/big-lama.pt",
|
268 |
device=DEVICE,
|
269 |
)
|
|
|
270 |
textured_glb_path = texture_pipe(
|
271 |
mesh_path=mesh_path,
|
272 |
save_dir=save_dir,
|
273 |
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
|
274 |
uv_unwarp=True,
|
275 |
-
uv_size=
|
276 |
rgb_path=mv_image_path,
|
277 |
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
278 |
-
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 180]],
|
279 |
)
|
280 |
-
torch.cuda.empty_cache()
|
281 |
-
log_gpu_memory()
|
282 |
-
return textured_glb_path
|
283 |
-
except Exception as e:
|
284 |
-
logger.error(f"Error in run_texture: {str(e)}\n{traceback.format_exc()}")
|
285 |
-
raise
|
286 |
|
287 |
-
@spaces.GPU(duration=3)
|
288 |
-
@torch.no_grad()
|
289 |
-
def run_full(image, seed=0, num_inference_steps=30, guidance_scale=7.0, simplify=True, target_face_num=DEFAULT_FACE_NUMBER, req=None):
|
290 |
-
try:
|
291 |
-
log_gpu_memory()
|
292 |
-
image_seg = run_segmentation(image)
|
293 |
-
mesh_path = image_to_3d(image_seg, seed, num_inference_steps, guidance_scale, simplify, target_face_num, req)
|
294 |
-
textured_glb_path = run_texture(image, mesh_path, seed, req)
|
295 |
return image_seg, mesh_path, textured_glb_path
|
296 |
except Exception as e:
|
297 |
-
logger.error(f"Error in run_full: {str(e)}
|
298 |
raise
|
299 |
|
300 |
-
def gradio_generate(image, seed=0, num_inference_steps=
|
301 |
try:
|
302 |
logger.info("Starting gradio_generate")
|
|
|
303 |
api_key = os.getenv("POLYGENIX_API_KEY", "your-secret-api-key")
|
304 |
request = gr.Request()
|
305 |
if not request.headers.get("x-api-key") == api_key:
|
306 |
logger.error("Invalid API key")
|
307 |
raise ValueError("Invalid API key")
|
308 |
|
|
|
309 |
if image.startswith("data:image"):
|
310 |
logger.info("Processing base64 image")
|
311 |
base64_string = image.split(",")[1]
|
@@ -319,12 +255,12 @@ def gradio_generate(image, seed=0, num_inference_steps=30, guidance_scale=7.0, s
|
|
319 |
logger.error(f"Image file not found: {temp_image_path}")
|
320 |
raise ValueError("Invalid or missing image file")
|
321 |
|
322 |
-
image_seg, mesh_path, textured_glb_path = run_full(temp_image_path, seed, num_inference_steps, guidance_scale, simplify, target_face_num,
|
323 |
session_hash = os.path.basename(os.path.dirname(textured_glb_path))
|
324 |
logger.info(f"Generated model at /files/{session_hash}/{os.path.basename(textured_glb_path)}")
|
325 |
return {"file_url": f"/files/{session_hash}/{os.path.basename(textured_glb_path)}"}
|
326 |
except Exception as e:
|
327 |
-
logger.error(f"Error in gradio_generate: {str(e)}
|
328 |
raise
|
329 |
|
330 |
def start_session(req: gr.Request):
|
@@ -333,7 +269,7 @@ def start_session(req: gr.Request):
|
|
333 |
os.makedirs(save_dir, exist_ok=True)
|
334 |
logger.info(f"Started session, created directory: {save_dir}")
|
335 |
except Exception as e:
|
336 |
-
logger.error(f"Error in start_session: {str(e)}
|
337 |
raise
|
338 |
|
339 |
def end_session(req: gr.Request):
|
@@ -342,7 +278,7 @@ def end_session(req: gr.Request):
|
|
342 |
shutil.rmtree(save_dir)
|
343 |
logger.info(f"Ended session, removed directory: {save_dir}")
|
344 |
except Exception as e:
|
345 |
-
logger.error(f"Error in end_session: {str(e)}
|
346 |
raise
|
347 |
|
348 |
def get_random_seed(randomize_seed, seed):
|
@@ -352,10 +288,12 @@ def get_random_seed(randomize_seed, seed):
|
|
352 |
logger.info(f"Generated seed: {seed}")
|
353 |
return seed
|
354 |
except Exception as e:
|
355 |
-
logger.error(f"Error in get_random_seed: {str(e)}
|
356 |
raise
|
357 |
|
|
|
358 |
def download_image(url: str, save_path: str) -> str:
|
|
|
359 |
try:
|
360 |
logger.info(f"Downloading image from {url}")
|
361 |
response = requests.get(url, stream=True)
|
@@ -366,21 +304,216 @@ def download_image(url: str, save_path: str) -> str:
|
|
366 |
logger.info(f"Saved image to {save_path}")
|
367 |
return save_path
|
368 |
except Exception as e:
|
369 |
-
logger.error(f"Failed to download image from {url}: {str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
raise
|
371 |
|
372 |
-
@spaces.GPU(duration=
|
373 |
@torch.no_grad()
|
374 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
try:
|
376 |
logger.info("Running run_full_api")
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
except Exception as e:
|
383 |
-
logger.error(f"Error in run_full_api: {str(e)}
|
384 |
raise
|
385 |
|
386 |
# Define Gradio API endpoint
|
@@ -391,8 +524,8 @@ try:
|
|
391 |
inputs=[
|
392 |
gr.Image(type="filepath", label="Image"),
|
393 |
gr.Number(label="Seed", value=0, precision=0),
|
394 |
-
gr.Number(label="Inference Steps", value=
|
395 |
-
gr.Number(label="Guidance Scale", value=7.
|
396 |
gr.Checkbox(label="Simplify Mesh", value=True),
|
397 |
gr.Number(label="Target Face Number", value=DEFAULT_FACE_NUMBER, precision=0)
|
398 |
],
|
@@ -401,7 +534,7 @@ try:
|
|
401 |
)
|
402 |
logger.info("Gradio API interface initialized successfully")
|
403 |
except Exception as e:
|
404 |
-
logger.error(f"Failed to initialize Gradio API interface: {str(e)}
|
405 |
raise
|
406 |
|
407 |
HEADER = """
|
@@ -487,6 +620,7 @@ HEADER = """
|
|
487 |
</style>
|
488 |
"""
|
489 |
|
|
|
490 |
try:
|
491 |
logger.info("Initializing Gradio Blocks interface")
|
492 |
with gr.Blocks(title="PolyGenixAI", css="body { background-color: #1A1A1A; } .gr-panel { background-color: #2D2D2D; }") as demo:
|
@@ -519,7 +653,7 @@ try:
|
|
519 |
minimum=8,
|
520 |
maximum=50,
|
521 |
step=1,
|
522 |
-
value=
|
523 |
info="Higher steps enhance detail but increase processing time",
|
524 |
elem_classes="gr-slider"
|
525 |
)
|
@@ -534,7 +668,7 @@ try:
|
|
534 |
)
|
535 |
reduce_face = gr.Checkbox(label="Simplify Mesh", value=True)
|
536 |
target_face_num = gr.Slider(
|
537 |
-
maximum=
|
538 |
minimum=10000,
|
539 |
value=DEFAULT_FACE_NUMBER,
|
540 |
label="Target Face Number",
|
@@ -554,7 +688,7 @@ try:
|
|
554 |
f"{TRIPOSG_CODE_DIR}/assets/example_data/{image}"
|
555 |
for image in os.listdir(f"{TRIPOSG_CODE_DIR}/assets/example_data")
|
556 |
],
|
557 |
-
fn=
|
558 |
inputs=[image_prompts],
|
559 |
outputs=[seg_image, model_output, textured_model_output],
|
560 |
cache_examples=True,
|
@@ -579,9 +713,7 @@ try:
|
|
579 |
target_face_num
|
580 |
],
|
581 |
outputs=[model_output]
|
582 |
-
).then(
|
583 |
-
lambda: gr.Button(interactive=True), outputs=[gen_texture_button]
|
584 |
-
)
|
585 |
gen_texture_button.click(
|
586 |
run_texture,
|
587 |
inputs=[image_prompts, model_output, seed],
|
@@ -591,7 +723,7 @@ try:
|
|
591 |
demo.unload(end_session)
|
592 |
logger.info("Gradio Blocks interface initialized successfully")
|
593 |
except Exception as e:
|
594 |
-
logger.error(f"Failed to initialize Gradio Blocks interface: {str(e)}
|
595 |
raise
|
596 |
|
597 |
if __name__ == "__main__":
|
@@ -600,5 +732,5 @@ if __name__ == "__main__":
|
|
600 |
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True)
|
601 |
logger.info("Gradio application launched successfully")
|
602 |
except Exception as e:
|
603 |
-
logger.error(f"Failed to launch Gradio application: {str(e)}
|
604 |
raise
|
|
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
+
from PIL import Image
|
7 |
import trimesh
|
8 |
import random
|
|
|
9 |
from transformers import AutoModelForImageSegmentation
|
10 |
from torchvision import transforms
|
11 |
from huggingface_hub import hf_hub_download, snapshot_download
|
|
|
13 |
import shutil
|
14 |
import base64
|
15 |
import logging
|
|
|
|
|
|
|
16 |
|
17 |
# Set up logging
|
18 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
22 |
try:
|
23 |
subprocess.run("pip install spandrel==0.4.1 --no-deps", shell=True, check=True)
|
24 |
except Exception as e:
|
25 |
+
logger.error(f"Failed to install spandrel: {str(e)}")
|
26 |
raise
|
27 |
|
28 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
30 |
|
31 |
logger.info(f"Using device: {DEVICE}")
|
32 |
|
33 |
+
DEFAULT_FACE_NUMBER = 100000
|
34 |
MAX_SEED = np.iinfo(np.int32).max
|
35 |
TRIPOSG_REPO_URL = "https://github.com/VAST-AI-Research/TripoSG.git"
|
36 |
MV_ADAPTER_REPO_URL = "https://github.com/huanngzh/MV-Adapter.git"
|
|
|
58 |
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))
|
59 |
|
60 |
try:
|
61 |
+
# triposg
|
62 |
from image_process import prepare_image
|
63 |
from briarmbg import BriaRMBG
|
64 |
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
|
65 |
+
rmbg_net = BriaRMBG.from_pretrained(RMBG_PRETRAINED_MODEL).to(DEVICE)
|
66 |
rmbg_net.eval()
|
67 |
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
68 |
snapshot_download("VAST-AI/TripoSG", local_dir=TRIPOSG_PRETRAINED_MODEL)
|
69 |
+
triposg_pipe = TripoSGPipeline.from_pretrained(TRIPOSG_PRETRAINED_MODEL).to(DEVICE, DTYPE)
|
70 |
except Exception as e:
|
71 |
+
logger.error(f"Failed to load TripoSG models: {str(e)}")
|
72 |
raise
|
73 |
|
74 |
try:
|
75 |
+
# mv adapter
|
76 |
+
NUM_VIEWS = 6
|
77 |
from inference_ig2mv_sdxl import prepare_pipeline, preprocess_image, remove_bg
|
78 |
from mvadapter.utils import get_orthogonal_camera, tensor_to_image, make_image_grid
|
79 |
from mvadapter.utils.render import NVDiffRastContextWrapper, load_mesh, render
|
|
|
90 |
)
|
91 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
92 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
93 |
+
).to(DEVICE)
|
94 |
transform_image = transforms.Compose(
|
95 |
[
|
96 |
+
transforms.Resize((1024, 1024)),
|
97 |
transforms.ToTensor(),
|
98 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
99 |
]
|
100 |
)
|
101 |
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, DEVICE)
|
102 |
except Exception as e:
|
103 |
+
logger.error(f"Failed to load MV-Adapter models: {str(e)}")
|
104 |
raise
|
105 |
|
106 |
try:
|
|
|
109 |
if not os.path.exists("checkpoints/big-lama.pt"):
|
110 |
subprocess.run("wget -P checkpoints/ https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt", shell=True, check=True)
|
111 |
except Exception as e:
|
112 |
+
logger.error(f"Failed to download checkpoints: {str(e)}")
|
113 |
raise
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
def get_random_hex():
|
116 |
random_bytes = os.urandom(8)
|
117 |
random_hex = random_bytes.hex()
|
118 |
return random_hex
|
119 |
|
120 |
+
@spaces.GPU(duration=5)
|
121 |
+
def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, req=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
try:
|
123 |
+
image_seg = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
124 |
+
|
125 |
+
outputs = triposg_pipe(
|
126 |
+
image=image_seg,
|
127 |
+
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
128 |
+
num_inference_steps=num_inference_steps,
|
129 |
+
guidance_scale=guidance_scale
|
130 |
+
).samples[0]
|
131 |
+
logger.info("Mesh extraction done")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))
|
133 |
+
|
134 |
if simplify:
|
135 |
+
logger.info("Starting mesh simplification")
|
136 |
from utils import simplify_mesh
|
137 |
mesh = simplify_mesh(mesh, target_face_num)
|
138 |
+
|
139 |
+
save_dir = os.path.join(TMP_DIR, "examples")
|
140 |
os.makedirs(save_dir, exist_ok=True)
|
141 |
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
|
142 |
mesh.export(mesh_path)
|
143 |
+
logger.info(f"Saved mesh to {mesh_path}")
|
144 |
+
|
145 |
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
height, width = 768, 768
|
|
|
|
|
|
|
|
|
|
|
148 |
cameras = get_orthogonal_camera(
|
149 |
+
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
150 |
distance=[1.8] * NUM_VIEWS,
|
151 |
left=-0.55,
|
152 |
right=0.55,
|
153 |
bottom=-0.55,
|
154 |
top=0.55,
|
155 |
+
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
156 |
device=DEVICE,
|
157 |
)
|
158 |
ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")
|
159 |
+
|
160 |
mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
|
161 |
+
render_out = render(
|
162 |
+
ctx,
|
163 |
+
mesh,
|
164 |
+
cameras,
|
165 |
+
height=height,
|
166 |
+
width=width,
|
167 |
+
render_attr=False,
|
168 |
+
normal_background=0.0,
|
169 |
+
)
|
|
|
170 |
control_images = (
|
171 |
torch.cat(
|
172 |
+
[
|
173 |
+
(render_out.pos + 0.5).clamp(0, 1),
|
174 |
+
(render_out.normal / 2 + 0.5).clamp(0, 1),
|
175 |
+
],
|
176 |
dim=-1,
|
177 |
)
|
178 |
.permute(0, 3, 1, 2)
|
179 |
.to(DEVICE)
|
180 |
)
|
181 |
+
|
182 |
image = Image.open(image)
|
183 |
+
image = remove_bg_fn(image)
|
|
|
|
|
|
|
184 |
image = preprocess_image(image, height, width)
|
185 |
+
|
186 |
+
pipe_kwargs = {}
|
187 |
+
if seed != -1 and isinstance(seed, int):
|
188 |
+
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
189 |
+
|
190 |
+
images = mv_adapter_pipe(
|
191 |
+
"high quality",
|
192 |
+
height=height,
|
193 |
+
width=width,
|
194 |
+
num_inference_steps=15,
|
195 |
+
guidance_scale=3.0,
|
196 |
+
num_images_per_prompt=NUM_VIEWS,
|
197 |
+
control_image=control_images,
|
198 |
+
control_conditioning_scale=1.0,
|
199 |
+
reference_image=image,
|
200 |
+
reference_conditioning_scale=1.0,
|
201 |
+
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
202 |
+
cross_attention_kwargs={"scale": 1.0},
|
203 |
+
**pipe_kwargs,
|
204 |
+
).images
|
205 |
+
|
206 |
+
torch.cuda.empty_cache()
|
207 |
os.makedirs(save_dir, exist_ok=True)
|
208 |
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
209 |
make_image_grid(images, rows=1).save(mv_image_path)
|
210 |
+
|
211 |
from texture import TexturePipeline, ModProcessConfig
|
212 |
texture_pipe = TexturePipeline(
|
213 |
upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
|
214 |
inpaint_ckpt_path="checkpoints/big-lama.pt",
|
215 |
device=DEVICE,
|
216 |
)
|
217 |
+
|
218 |
textured_glb_path = texture_pipe(
|
219 |
mesh_path=mesh_path,
|
220 |
save_dir=save_dir,
|
221 |
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
|
222 |
uv_unwarp=True,
|
223 |
+
uv_size=4096,
|
224 |
rgb_path=mv_image_path,
|
225 |
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
226 |
+
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
227 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
return image_seg, mesh_path, textured_glb_path
|
230 |
except Exception as e:
|
231 |
+
logger.error(f"Error in run_full: {str(e)}")
|
232 |
raise
|
233 |
|
234 |
+
def gradio_generate(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER):
|
235 |
try:
|
236 |
logger.info("Starting gradio_generate")
|
237 |
+
# Verify API key
|
238 |
api_key = os.getenv("POLYGENIX_API_KEY", "your-secret-api-key")
|
239 |
request = gr.Request()
|
240 |
if not request.headers.get("x-api-key") == api_key:
|
241 |
logger.error("Invalid API key")
|
242 |
raise ValueError("Invalid API key")
|
243 |
|
244 |
+
# Handle base64 image or file path
|
245 |
if image.startswith("data:image"):
|
246 |
logger.info("Processing base64 image")
|
247 |
base64_string = image.split(",")[1]
|
|
|
255 |
logger.error(f"Image file not found: {temp_image_path}")
|
256 |
raise ValueError("Invalid or missing image file")
|
257 |
|
258 |
+
image_seg, mesh_path, textured_glb_path = run_full(temp_image_path, seed, num_inference_steps, guidance_scale, simplify, target_face_num, req=None)
|
259 |
session_hash = os.path.basename(os.path.dirname(textured_glb_path))
|
260 |
logger.info(f"Generated model at /files/{session_hash}/{os.path.basename(textured_glb_path)}")
|
261 |
return {"file_url": f"/files/{session_hash}/{os.path.basename(textured_glb_path)}"}
|
262 |
except Exception as e:
|
263 |
+
logger.error(f"Error in gradio_generate: {str(e)}")
|
264 |
raise
|
265 |
|
266 |
def start_session(req: gr.Request):
|
|
|
269 |
os.makedirs(save_dir, exist_ok=True)
|
270 |
logger.info(f"Started session, created directory: {save_dir}")
|
271 |
except Exception as e:
|
272 |
+
logger.error(f"Error in start_session: {str(e)}")
|
273 |
raise
|
274 |
|
275 |
def end_session(req: gr.Request):
|
|
|
278 |
shutil.rmtree(save_dir)
|
279 |
logger.info(f"Ended session, removed directory: {save_dir}")
|
280 |
except Exception as e:
|
281 |
+
logger.error(f"Error in end_session: {str(e)}")
|
282 |
raise
|
283 |
|
284 |
def get_random_seed(randomize_seed, seed):
|
|
|
288 |
logger.info(f"Generated seed: {seed}")
|
289 |
return seed
|
290 |
except Exception as e:
|
291 |
+
logger.error(f"Error in get_random_seed: {str(e)}")
|
292 |
raise
|
293 |
|
294 |
+
|
295 |
def download_image(url: str, save_path: str) -> str:
|
296 |
+
"""Download an image from a URL and save it locally."""
|
297 |
try:
|
298 |
logger.info(f"Downloading image from {url}")
|
299 |
response = requests.get(url, stream=True)
|
|
|
304 |
logger.info(f"Saved image to {save_path}")
|
305 |
return save_path
|
306 |
except Exception as e:
|
307 |
+
logger.error(f"Failed to download image from {url}: {str(e)}")
|
308 |
+
raise
|
309 |
+
|
310 |
+
@spaces.GPU()
|
311 |
+
@torch.no_grad()
|
312 |
+
def run_segmentation(image):
|
313 |
+
try:
|
314 |
+
logger.info("Running segmentation")
|
315 |
+
# Handle FileData dict or URL
|
316 |
+
if isinstance(image, dict):
|
317 |
+
image_path = image.get("path") or image.get("url")
|
318 |
+
if not image_path:
|
319 |
+
logger.error("Invalid image input: no path or URL provided")
|
320 |
+
raise ValueError("Invalid image input: no path or URL provided")
|
321 |
+
if image_path.startswith("http"):
|
322 |
+
temp_image_path = os.path.join(TMP_DIR, f"input_{get_random_hex()}.png")
|
323 |
+
image_path = download_image(image_path, temp_image_path)
|
324 |
+
elif isinstance(image, str) and image.startswith("http"):
|
325 |
+
temp_image_path = os.path.join(TMP_DIR, f"input_{get_random_hex()}.png")
|
326 |
+
image_path = download_image(image, temp_image_path)
|
327 |
+
else:
|
328 |
+
image_path = image
|
329 |
+
if not isinstance(image, (str, bytes)) or (isinstance(image, str) and not os.path.exists(image)):
|
330 |
+
logger.error(f"Invalid image type or path: {type(image)}")
|
331 |
+
raise ValueError(f"Expected str (path/URL), bytes, or FileData dict, got {type(image)}")
|
332 |
+
|
333 |
+
image = prepare_image(image_path, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
334 |
+
logger.info("Segmentation complete")
|
335 |
+
return image
|
336 |
+
except Exception as e:
|
337 |
+
logger.error(f"Error in run_segmentation: {str(e)}")
|
338 |
+
raise
|
339 |
+
|
340 |
+
@spaces.GPU(duration=5)
|
341 |
+
@torch.no_grad()
|
342 |
+
def image_to_3d(
|
343 |
+
image, # Changed to accept FileData dict or PIL Image
|
344 |
+
seed: int,
|
345 |
+
num_inference_steps: int,
|
346 |
+
guidance_scale: float,
|
347 |
+
simplify: bool,
|
348 |
+
target_face_num: int,
|
349 |
+
req: gr.Request
|
350 |
+
):
|
351 |
+
try:
|
352 |
+
logger.info("Running image_to_3d")
|
353 |
+
# Handle FileData dict from gradio_client
|
354 |
+
if isinstance(image, dict):
|
355 |
+
image_path = image.get("path") or image.get("url")
|
356 |
+
if not image_path:
|
357 |
+
logger.error("Invalid image input: no path or URL provided")
|
358 |
+
raise ValueError("Invalid image input: no path or URL provided")
|
359 |
+
image = Image.open(image_path)
|
360 |
+
elif not isinstance(image, Image.Image):
|
361 |
+
logger.error(f"Invalid image type: {type(image)}")
|
362 |
+
raise ValueError(f"Expected PIL Image or FileData dict, got {type(image)}")
|
363 |
+
|
364 |
+
outputs = triposg_pipe(
|
365 |
+
image=image,
|
366 |
+
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
367 |
+
num_inference_steps=num_inference_steps,
|
368 |
+
guidance_scale=guidance_scale
|
369 |
+
).samples[0]
|
370 |
+
logger.info("Mesh extraction done")
|
371 |
+
mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))
|
372 |
+
|
373 |
+
if simplify:
|
374 |
+
logger.info("Starting mesh simplification")
|
375 |
+
try:
|
376 |
+
from utils import simplify_mesh
|
377 |
+
mesh = simplify_mesh(mesh, target_face_num)
|
378 |
+
except ImportError as e:
|
379 |
+
logger.error(f"Failed to import simplify_mesh: {str(e)}")
|
380 |
+
raise
|
381 |
+
|
382 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
383 |
+
os.makedirs(save_dir, exist_ok=True)
|
384 |
+
mesh_path = os.path.join(save_dir, f"polygenixai_{get_random_hex()}.glb")
|
385 |
+
mesh.export(mesh_path)
|
386 |
+
logger.info(f"Saved mesh to {mesh_path}")
|
387 |
+
|
388 |
+
torch.cuda.empty_cache()
|
389 |
+
return mesh_path
|
390 |
+
except Exception as e:
|
391 |
+
logger.error(f"Error in image_to_3d: {str(e)}")
|
392 |
raise
|
393 |
|
394 |
+
@spaces.GPU(duration=5)
|
395 |
@torch.no_grad()
|
396 |
+
def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
397 |
+
try:
|
398 |
+
logger.info("Running texture generation")
|
399 |
+
height, width = 768, 768
|
400 |
+
cameras = get_orthogonal_camera(
|
401 |
+
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
402 |
+
distance=[1.8] * NUM_VIEWS,
|
403 |
+
left=-0.55,
|
404 |
+
right=0.55,
|
405 |
+
bottom=-0.55,
|
406 |
+
top=0.55,
|
407 |
+
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
408 |
+
device=DEVICE,
|
409 |
+
)
|
410 |
+
ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")
|
411 |
+
|
412 |
+
mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
|
413 |
+
render_out = render(
|
414 |
+
ctx,
|
415 |
+
mesh,
|
416 |
+
cameras,
|
417 |
+
height=height,
|
418 |
+
width=width,
|
419 |
+
render_attr=False,
|
420 |
+
normal_background=0.0,
|
421 |
+
)
|
422 |
+
control_images = (
|
423 |
+
torch.cat(
|
424 |
+
[
|
425 |
+
(render_out.pos + 0.5).clamp(0, 1),
|
426 |
+
(render_out.normal / 2 + 0.5).clamp(0, 1),
|
427 |
+
],
|
428 |
+
dim=-1,
|
429 |
+
)
|
430 |
+
.permute(0, 3, 1, 2)
|
431 |
+
.to(DEVICE)
|
432 |
+
)
|
433 |
+
|
434 |
+
image = Image.open(image)
|
435 |
+
image = remove_bg_fn(image)
|
436 |
+
image = preprocess_image(image, height, width)
|
437 |
+
|
438 |
+
pipe_kwargs = {}
|
439 |
+
if seed != -1 and isinstance(seed, int):
|
440 |
+
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
441 |
+
|
442 |
+
images = mv_adapter_pipe(
|
443 |
+
"high quality",
|
444 |
+
height=height,
|
445 |
+
width=width,
|
446 |
+
num_inference_steps=15,
|
447 |
+
guidance_scale=3.0,
|
448 |
+
num_images_per_prompt=NUM_VIEWS,
|
449 |
+
control_image=control_images,
|
450 |
+
control_conditioning_scale=1.0,
|
451 |
+
reference_image=image,
|
452 |
+
reference_conditioning_scale=1.0,
|
453 |
+
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
454 |
+
cross_attention_kwargs={"scale": 1.0},
|
455 |
+
**pipe_kwargs,
|
456 |
+
).images
|
457 |
+
|
458 |
+
torch.cuda.empty_cache()
|
459 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
460 |
+
os.makedirs(save_dir, exist_ok=True)
|
461 |
+
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
462 |
+
make_image_grid(images, rows=1).save(mv_image_path)
|
463 |
+
|
464 |
+
from texture import TexturePipeline, ModProcessConfig
|
465 |
+
texture_pipe = TexturePipeline(
|
466 |
+
upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
|
467 |
+
inpaint_ckpt_path="checkpoints/big-lama.pt",
|
468 |
+
device=DEVICE,
|
469 |
+
)
|
470 |
+
|
471 |
+
textured_glb_path = texture_pipe(
|
472 |
+
mesh_path=mesh_path,
|
473 |
+
save_dir=save_dir,
|
474 |
+
save_name=f"polygenixai_texture_mesh_{get_random_hex()}.glb",
|
475 |
+
uv_unwarp=True,
|
476 |
+
uv_size=4096,
|
477 |
+
rgb_path=mv_image_path,
|
478 |
+
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
479 |
+
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
480 |
+
)
|
481 |
+
|
482 |
+
logger.info(f"Textured model saved to {textured_glb_path}")
|
483 |
+
return textured_glb_path
|
484 |
+
except Exception as e:
|
485 |
+
logger.error(f"Error in run_texture: {str(e)}")
|
486 |
+
raise
|
487 |
+
|
488 |
+
@spaces.GPU(duration=5)
|
489 |
+
@torch.no_grad()
|
490 |
+
def run_full_api(image, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, req: gr.Request = None):
|
491 |
try:
|
492 |
logger.info("Running run_full_api")
|
493 |
+
# Handle FileData dict or URL
|
494 |
+
if isinstance(image, dict):
|
495 |
+
image_path = image.get("path") or image.get("url")
|
496 |
+
if not image_path:
|
497 |
+
logger.error("Invalid image input: no path or URL provided")
|
498 |
+
raise ValueError("Invalid image input: no path or URL provided")
|
499 |
+
if image_path.startswith("http"):
|
500 |
+
temp_image_path = os.path.join(TMP_DIR, f"input_{get_random_hex()}.png")
|
501 |
+
image_path = download_image(image_path, temp_image_path)
|
502 |
+
elif isinstance(image, str) and image.startswith("http"):
|
503 |
+
temp_image_path = os.path.join(TMP_DIR, f"input_{get_random_hex()}.png")
|
504 |
+
image_path = download_image(image, temp_image_path)
|
505 |
+
else:
|
506 |
+
image_path = image
|
507 |
+
if not isinstance(image, str) or not os.path.exists(image_path):
|
508 |
+
logger.error(f"Invalid image path: {image_path}")
|
509 |
+
raise ValueError(f"Invalid image path: {image_path}")
|
510 |
+
|
511 |
+
image_seg, mesh_path, textured_glb_path = run_full(image_path, seed, num_inference_steps, guidance_scale, simplify, target_face_num, req)
|
512 |
+
session_hash = os.path.basename(os.path.dirname(textured_glb_path))
|
513 |
+
logger.info(f"Generated textured model at /files/{session_hash}/{os.path.basename(textured_glb_path)}")
|
514 |
+
return {"file_url": f"/files/{session_hash}/{os.path.basename(textured_glb_path)}"}
|
515 |
except Exception as e:
|
516 |
+
logger.error(f"Error in run_full_api: {str(e)}")
|
517 |
raise
|
518 |
|
519 |
# Define Gradio API endpoint
|
|
|
524 |
inputs=[
|
525 |
gr.Image(type="filepath", label="Image"),
|
526 |
gr.Number(label="Seed", value=0, precision=0),
|
527 |
+
gr.Number(label="Inference Steps", value=50, precision=0),
|
528 |
+
gr.Number(label="Guidance Scale", value=7.5),
|
529 |
gr.Checkbox(label="Simplify Mesh", value=True),
|
530 |
gr.Number(label="Target Face Number", value=DEFAULT_FACE_NUMBER, precision=0)
|
531 |
],
|
|
|
534 |
)
|
535 |
logger.info("Gradio API interface initialized successfully")
|
536 |
except Exception as e:
|
537 |
+
logger.error(f"Failed to initialize Gradio API interface: {str(e)}")
|
538 |
raise
|
539 |
|
540 |
HEADER = """
|
|
|
620 |
</style>
|
621 |
"""
|
622 |
|
623 |
+
# Gradio web interface
|
624 |
try:
|
625 |
logger.info("Initializing Gradio Blocks interface")
|
626 |
with gr.Blocks(title="PolyGenixAI", css="body { background-color: #1A1A1A; } .gr-panel { background-color: #2D2D2D; }") as demo:
|
|
|
653 |
minimum=8,
|
654 |
maximum=50,
|
655 |
step=1,
|
656 |
+
value=50,
|
657 |
info="Higher steps enhance detail but increase processing time",
|
658 |
elem_classes="gr-slider"
|
659 |
)
|
|
|
668 |
)
|
669 |
reduce_face = gr.Checkbox(label="Simplify Mesh", value=True)
|
670 |
target_face_num = gr.Slider(
|
671 |
+
maximum=1000000,
|
672 |
minimum=10000,
|
673 |
value=DEFAULT_FACE_NUMBER,
|
674 |
label="Target Face Number",
|
|
|
688 |
f"{TRIPOSG_CODE_DIR}/assets/example_data/{image}"
|
689 |
for image in os.listdir(f"{TRIPOSG_CODE_DIR}/assets/example_data")
|
690 |
],
|
691 |
+
fn=run_full,
|
692 |
inputs=[image_prompts],
|
693 |
outputs=[seg_image, model_output, textured_model_output],
|
694 |
cache_examples=True,
|
|
|
713 |
target_face_num
|
714 |
],
|
715 |
outputs=[model_output]
|
716 |
+
).then(lambda: gr.Button(interactive=True), outputs=[gen_texture_button])
|
|
|
|
|
717 |
gen_texture_button.click(
|
718 |
run_texture,
|
719 |
inputs=[image_prompts, model_output, seed],
|
|
|
723 |
demo.unload(end_session)
|
724 |
logger.info("Gradio Blocks interface initialized successfully")
|
725 |
except Exception as e:
|
726 |
+
logger.error(f"Failed to initialize Gradio Blocks interface: {str(e)}")
|
727 |
raise
|
728 |
|
729 |
if __name__ == "__main__":
|
|
|
732 |
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True)
|
733 |
logger.info("Gradio application launched successfully")
|
734 |
except Exception as e:
|
735 |
+
logger.error(f"Failed to launch Gradio application: {str(e)}")
|
736 |
raise
|