Spaces:
Runtime error
Runtime error
Update api.py
Browse files
api.py
CHANGED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from termcolor import colored
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import BertTokenizer, BertForMaskedLM, BertForSequenceClassification
|
| 6 |
+
|
| 7 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 8 |
+
|
| 9 |
+
@st.cache
|
| 10 |
+
def load_models():
|
| 11 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
| 12 |
+
bert_mlm_positive = BertForMaskedLM.from_pretrained('text_style_mlm_positive', return_dict=True).to(device).train(True)
|
| 13 |
+
bert_mlm_negative = BertForMaskedLM.from_pretrained('text_style_mlm_negative', return_dict=True).to(device).train(True)
|
| 14 |
+
bert_classifier = BertForSequenceClassification.from_pretrained('text_style_classifier', num_labels=2).to(device).train(True)
|
| 15 |
+
return tokenizer, bert_mlm_positive, bert_mlm_negative, bert_classifier
|
| 16 |
+
|
| 17 |
+
tokenizer, bert_mlm_positive, bert_mlm_negative, bert_classifier = load_models()
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def highlight_diff(sent, sent_main):
|
| 21 |
+
tokens = tokenizer.tokenize(sent)
|
| 22 |
+
tokens_main = tokenizer.tokenize(sent_main)
|
| 23 |
+
|
| 24 |
+
new_toks = []
|
| 25 |
+
for i, (tok, tok_main) in enumerate(zip(tokens, tokens_main)):
|
| 26 |
+
if tok != tok_main:
|
| 27 |
+
new_toks.append(colored(tok, 'red', attrs=['bold', 'underline']))
|
| 28 |
+
else:
|
| 29 |
+
new_toks.append(tok)
|
| 30 |
+
|
| 31 |
+
return ' '.join(new_toks)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_classifier_prob(sent):
|
| 35 |
+
bert_classifier.eval()
|
| 36 |
+
with torch.no_grad():
|
| 37 |
+
return bert_classifier(**{k: v.to(device) for k, v in tokenizer(sent, return_tensors='pt').items()}).logits.softmax(dim=-1)[0].cpu().numpy()
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def beam_get_replacements(current_beam, beam_size, epsilon=1e-3, used_positions=[]):
|
| 41 |
+
"""
|
| 42 |
+
- for each sentence in :current_beam: - split the sentence into tokens using the INGSOC-approved BERT tokenizer
|
| 43 |
+
- check :beam_size: hypotheses on each step for each sentence
|
| 44 |
+
- save best :beam_size: hypotheses
|
| 45 |
+
:return: generator<list of hypotheses on step>
|
| 46 |
+
"""
|
| 47 |
+
# <YOUR CODE HERE>
|
| 48 |
+
bert_mlm_positive.eval()
|
| 49 |
+
bert_mlm_negative.eval()
|
| 50 |
+
new_beam = []
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
for sentence in current_beam:
|
| 53 |
+
input_ = {k: v.to(device) for k, v in tokenizer(sentence, return_tensors='pt').items()}
|
| 54 |
+
probs_negative = bert_mlm_negative(**input_).logits.softmax(dim=-1)[0]
|
| 55 |
+
probs_positive = bert_mlm_positive(**input_).logits.softmax(dim=-1)[0]
|
| 56 |
+
|
| 57 |
+
ids = input_['input_ids'][0].cpu().numpy()
|
| 58 |
+
seq_len = probs_positive.shape[0]
|
| 59 |
+
p_pos = probs_positive[torch.arange(seq_len), ids]
|
| 60 |
+
p_neg = probs_negative[torch.arange(seq_len), ids]
|
| 61 |
+
|
| 62 |
+
order_of_replacement = ((p_pos + epsilon) / (p_neg + epsilon)).argsort()
|
| 63 |
+
for pos in order_of_replacement:
|
| 64 |
+
if pos in used_positions or pos==0 or pos==len(ids)-1:
|
| 65 |
+
continue
|
| 66 |
+
used_position = pos
|
| 67 |
+
replacement_ids = (-probs_positive[pos,:]).argsort()[:beam_size]
|
| 68 |
+
for replacement_id in replacement_ids:
|
| 69 |
+
if replacement_id == ids[pos]:
|
| 70 |
+
continue
|
| 71 |
+
new_ids = ids.copy()
|
| 72 |
+
new_ids[pos] = replacement_id
|
| 73 |
+
new_beam.append(new_ids)
|
| 74 |
+
break
|
| 75 |
+
if len(new_beam) > 0:
|
| 76 |
+
new_beam = [tokenizer.decode(ids[1:-1]) for ids in new_beam]
|
| 77 |
+
new_beam = {sent: get_classifier_prob(sent)[1] for sent in new_beam}
|
| 78 |
+
for sent, prob in current_beam.items():
|
| 79 |
+
new_beam[sent] = prob
|
| 80 |
+
|
| 81 |
+
if len(new_beam) > beam_size:
|
| 82 |
+
new_beam = {k: v for k, v in sorted(new_beam.items(), key = lambda el: el[1], reverse=True)[:beam_size]}
|
| 83 |
+
return new_beam, used_position
|
| 84 |
+
else:
|
| 85 |
+
st.write("No more new hypotheses")
|
| 86 |
+
return current_beam, None
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def get_best_hypotheses(sentence, beam_size, max_steps, epsilon=1e-3, pretty_output=False):
|
| 90 |
+
current_beam = {sentence: get_classifier_prob(sentence)[1]}
|
| 91 |
+
used_poss = []
|
| 92 |
+
|
| 93 |
+
st.write(f"step #0:")
|
| 94 |
+
st.write(f"-- 1: (positive probability ~ {round(current_beam[sentence], 5)})\n {sentence}")
|
| 95 |
+
|
| 96 |
+
for step in range(max_steps):
|
| 97 |
+
current_beam, used_pos = beam_get_replacements(current_beam, beam_size, epsilon, used_poss)
|
| 98 |
+
|
| 99 |
+
st.write(f"\nstep #{step+1}:")
|
| 100 |
+
for i, (sent, prob) in enumerate(current_beam.items()):
|
| 101 |
+
st.write(f"-- {i+1}: (positive probability ~ {round(prob, 5)})\n {highlight_diff(sent, sentence) if pretty_output else sent}")
|
| 102 |
+
|
| 103 |
+
if used_pos is None:
|
| 104 |
+
return current_beam, used_poss
|
| 105 |
+
else:
|
| 106 |
+
used_poss.append(used_pos)
|
| 107 |
+
|
| 108 |
+
return current_beam, used_poss
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
st.title("Correcting opinions")
|
| 112 |
+
default_value = "write your review here (in lower case - vocab reasons)"
|
| 113 |
+
sentence = st.text_area("Text", default_value, height = 275)
|
| 114 |
+
beam_size = st.sidebar.slider("Beam size", value = 3, min_value = 1, max_value=20, step=1)
|
| 115 |
+
max_steps = st.sidebar.slider("Max steps", value = 3, min_value = 1, max_value=10, step=1)
|
| 116 |
+
prettyfy = st.sidebar.slider("Higlight changes", value = 0, min_value = 0, max_value=1, step=1)
|
| 117 |
+
|
| 118 |
+
beam, used_poss = get_best_hypotheses(sentence, beam_size=beam_size, max_steps=max_steps, pretty_output=bool(prettyfy))
|