Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from diffusers import StableDiffusionPipeline
|
| 2 |
from diffusers import StableDiffusionImg2ImgPipeline
|
| 3 |
import gradio as gr
|
|
@@ -33,15 +34,17 @@ last_mode = "txt2img"
|
|
| 33 |
current_model = models[1]
|
| 34 |
current_model_path = current_model.path
|
| 35 |
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
|
|
|
|
| 36 |
if torch.cuda.is_available():
|
| 37 |
pipe = pipe.to("cuda")
|
|
|
|
| 38 |
|
| 39 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
| 40 |
|
| 41 |
def custom_model_changed(path):
|
| 42 |
models[0].path = path
|
|
|
|
| 43 |
current_model = models[0]
|
| 44 |
-
return models[0].path
|
| 45 |
|
| 46 |
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
| 47 |
|
|
|
|
| 1 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel
|
| 2 |
from diffusers import StableDiffusionPipeline
|
| 3 |
from diffusers import StableDiffusionImg2ImgPipeline
|
| 4 |
import gradio as gr
|
|
|
|
| 34 |
current_model = models[1]
|
| 35 |
current_model_path = current_model.path
|
| 36 |
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
|
| 37 |
+
# pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
|
| 38 |
if torch.cuda.is_available():
|
| 39 |
pipe = pipe.to("cuda")
|
| 40 |
+
# pipe_i2i = pipe_i2i.to("cuda")
|
| 41 |
|
| 42 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
| 43 |
|
| 44 |
def custom_model_changed(path):
|
| 45 |
models[0].path = path
|
| 46 |
+
global current_model
|
| 47 |
current_model = models[0]
|
|
|
|
| 48 |
|
| 49 |
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
| 50 |
|