File size: 3,195 Bytes
88f3c8e
 
 
 
 
 
 
 
 
 
85e517e
88f3c8e
 
3b9afc9
130d92d
85e517e
3b9afc9
 
88f3c8e
 
 
 
 
 
 
 
 
 
 
a66da40
130d92d
3b9afc9
88f3c8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b9afc9
88f3c8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b9afc9
88f3c8e
 
 
 
 
 
 
 
 
 
 
3b9afc9
88f3c8e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from typing import TypedDict, Annotated
from langgraph.graph.message import add_messages
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage, SystemMessage
from langgraph.prebuilt import ToolNode
from langgraph.graph import START, StateGraph
from langgraph.prebuilt import tools_condition

from tools import search_tool, weather_info_tool, hub_stats_tool


import gradio as gr


from smolagents import GradioUI, CodeAgent, HfApiModel


from retriever import load_guest_dataset

from dotenv import load_dotenv
import yaml
load_dotenv()

# Import our custom tools from their modules
from retriever import load_guest_dataset


# Import our custom tools from their modules
from retriever import load_guest_dataset

model = HfApiModel()
guest_info_tool = load_guest_dataset()

# Load prompts from YAML file
with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)

# Get the system prompt from the YAML file
system_prompt = prompt_templates["system_prompt"]

# Initialize the chat model
chat = ChatOllama(model="qwen2:7b",
                verbose=True)

# Define available tools
tools = [
        load_guest_dataset, 
        search_tool, 
        weather_info_tool, 
        hub_stats_tool
        ]

# Bind tools to the chat model
chat_with_tools = chat.bind_tools(tools)

# Generate the AgentState and Agent graph
class AgentState(TypedDict):
    messages: Annotated[list[AnyMessage], add_messages]


def assistant(state: AgentState):
    # If this is the first message, add the system prompt
    if len(state["messages"]) == 1 and isinstance(state["messages"][0], HumanMessage):
        # Add system message with the ReAct framework prompt
        messages = [SystemMessage(content=system_prompt)] + state["messages"]
    else:
        messages = state["messages"]

    return {
        "messages": [chat_with_tools.invoke(messages)],
    }


## The graph
builder = StateGraph(AgentState)

# Define nodes: these do the work
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))

# Define edges: these determine how the control flow moves
builder.add_edge(START, "assistant")
builder.add_conditional_edges(
    "assistant",
    # If the latest message requires a tool, route to tools
    # Otherwise, provide a direct response
    tools_condition,
)
builder.add_edge("tools", "assistant")
graph_app = builder.compile()

graph_state = {}

# Gradio expects a function with (chat_history, user_message) -> (updated_chat_history)
def chat_fn(message, history):
    session_id = "session-123"

    result = graph_app.invoke(
        {"messages": [HumanMessage(content=message)]},
        config={"configurable": {"thread_id": session_id}}
    )

    response = result["messages"][-1].content
    history.append((message, response))
    return history, ""

 
# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("### LangGraph Chat with Gradio")
    chatbot = gr.Chatbot()
    msg = gr.Textbox(label="Type your message")
    send_btn = gr.Button("Send")

    # Hook the send button
    send_btn.click(fn=chat_fn, inputs=[msg, chatbot], outputs=[chatbot, msg])


if __name__ == "__main__":
    demo.launch()