Spaces:
Sleeping
Sleeping
File size: 2,189 Bytes
d349925 11d423c d349925 927f7a3 11d423c d349925 11d423c b3a1556 d349925 4295e2c 927f7a3 76e9582 4295e2c 927f7a3 4295e2c 11d423c 76e9582 11d423c d349925 4295e2c 11d423c d349925 4295e2c d349925 4295e2c 927f7a3 d349925 b3a1556 76e9582 11d423c 4295e2c 927f7a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
from transformers import AutoTokenizer, AutoModel, GPT2LMHeadModel, GPT2Tokenizer
import torch
# Load the NASA-specific bi-encoder model and tokenizer
bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2"
bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name)
bi_model = AutoModel.from_pretrained(bi_encoder_model_name)
# Load the GPT-2 model and tokenizer for response generation
gpt2_model_name = "gpt2"
gpt2_tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name)
gpt2_model = GPT2LMHeadModel.from_pretrained(gpt2_model_name)
def encode_text(text):
inputs = bi_tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=128)
outputs = bi_model(**inputs)
# Ensure the output is 2D by averaging the last hidden state along the sequence dimension
return outputs.last_hidden_state.mean(dim=1).detach().numpy()
def generate_response(user_input, context_embedding):
# Create a structured prompt for GPT-2
combined_input = f"Question: {user_input}\nContext: {context_embedding}\nAnswer:"
# Generate a response using GPT-2 with adjusted parameters
gpt2_inputs = gpt2_tokenizer.encode(combined_input, return_tensors='pt')
gpt2_outputs = gpt2_model.generate(
gpt2_inputs,
max_length=150,
num_return_sequences=1,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.2
)
generated_text = gpt2_tokenizer.decode(gpt2_outputs[0], skip_special_tokens=True)
return generated_text
def chatbot(user_input, context=""):
context_embedding = encode_text(context) if context else ""
response = generate_response(user_input, context_embedding)
return response
# Create the Gradio interface
iface = gr.Interface(
fn=chatbot,
inputs=[gr.Textbox(lines=2, placeholder="Enter your message here..."), gr.Textbox(lines=2, placeholder="Enter context here (optional)...")],
outputs="text",
title="Context-Aware Dynamic Response Chatbot",
description="A chatbot using a NASA-specific bi-encoder model to understand the input context and GPT-2 to generate dynamic responses."
)
# Launch the interface
iface.launch()
|