aquibmoin's picture
Update app.py
a40023d verified
raw
history blame
2.58 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModel
from openai import OpenAI
import os
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
# Load the NASA-specific bi-encoder model and tokenizer
bi_encoder_model_name = "nasa-impact/nasa-smd-ibm-st-v2"
bi_tokenizer = AutoTokenizer.from_pretrained(bi_encoder_model_name)
bi_model = AutoModel.from_pretrained(bi_encoder_model_name)
# Set up OpenAI client
api_key = os.getenv('OPENAI_API_KEY')
client = OpenAI(api_key=api_key)
def encode_text(text):
inputs = bi_tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=128)
outputs = bi_model(**inputs)
return outputs.last_hidden_state.mean(dim=1).detach().numpy().flatten() # Ensure the output is 2D
def retrieve_relevant_context(user_input, context_texts):
user_embedding = encode_text(user_input).reshape(1, -1)
context_embeddings = np.array([encode_text(text) for text in context_texts])
context_embeddings = context_embeddings.reshape(len(context_embeddings), -1) # Flatten each embedding
similarities = cosine_similarity(user_embedding, context_embeddings).flatten()
most_relevant_idx = np.argmax(similarities)
return context_texts[most_relevant_idx]
def generate_response(user_input, relevant_context):
combined_input = f"Context: {relevant_context}\nQuestion: {user_input}\nAnswer:"
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "user", "content": combined_input}
],
max_tokens=150,
temperature=0.7,
top_p=0.9,
frequency_penalty=0.5,
presence_penalty=0.0
)
return response.choices[0].message.content.strip()
def chatbot(user_input, context=""):
context_texts = context.split("\n")
relevant_context = retrieve_relevant_context(user_input, context_texts) if context else ""
response = generate_response(user_input, relevant_context)
return response
# Create the Gradio interface
iface = gr.Interface(
fn=chatbot,
inputs=[
gr.Textbox(lines=2, placeholder="Enter your message here..."),
gr.Textbox(lines=5, placeholder="Enter context here, separated by new lines...")
],
outputs="text",
title="Context-Aware Dynamic Response Chatbot",
description="A chatbot using a NASA-specific bi-encoder model to understand the input context and GPT-4 to generate dynamic responses. Enter context to get more refined and relevant responses."
)
# Launch the interface
iface.launch(share=True)