ar0551 commited on
Commit
911d75e
·
verified ·
1 Parent(s): 3952f36

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -7
app.py CHANGED
@@ -5,13 +5,12 @@ import numpy as np
5
  import cv2
6
  from PIL import Image
7
  import spaces
8
- import io
9
 
10
  # 🌟 Auto-detect device (CPU/GPU)
11
  device = "cuda"
12
  precision = torch.float16
13
 
14
-
15
  # 🏗️ Load ControlNet model for Canny edge detection
16
  # xinsir/controlnet-canny-sdxl-1.0
17
  # diffusers/controlnet-canny-sdxl-1.0
@@ -26,6 +25,7 @@ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype
26
  # Scheduler
27
  eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
28
 
 
29
  pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
30
  "stabilityai/stable-diffusion-xl-base-1.0",
31
  controlnet=controlnet,
@@ -58,12 +58,8 @@ def generate_image(prompt, input_image, low_threshold, high_threshold, strength,
58
  controlnet_conditioning_scale=float(controlnet_conditioning_scale),
59
  strength=strength
60
  ).images[0]
61
-
62
- result_buffer = io.BytesIO()
63
- result.save(result_buffer, format="JPEG")
64
- result_buffer.seek(0)
65
 
66
- return edge_detected, result_buffer
67
 
68
  # 🖥️ Gradio UI
69
  with gr.Blocks() as demo:
 
5
  import cv2
6
  from PIL import Image
7
  import spaces
8
+
9
 
10
  # 🌟 Auto-detect device (CPU/GPU)
11
  device = "cuda"
12
  precision = torch.float16
13
 
 
14
  # 🏗️ Load ControlNet model for Canny edge detection
15
  # xinsir/controlnet-canny-sdxl-1.0
16
  # diffusers/controlnet-canny-sdxl-1.0
 
25
  # Scheduler
26
  eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
27
 
28
+ # Stable Diffusion Model
29
  pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
30
  "stabilityai/stable-diffusion-xl-base-1.0",
31
  controlnet=controlnet,
 
58
  controlnet_conditioning_scale=float(controlnet_conditioning_scale),
59
  strength=strength
60
  ).images[0]
 
 
 
 
61
 
62
+ return edge_detected, result
63
 
64
  # 🖥️ Gradio UI
65
  with gr.Blocks() as demo: