File size: 38,945 Bytes
5d9aa5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
"""
Data processor for processing extracted data.
"""
import re
import os
import json
from typing import Dict, Any, List, Optional, Tuple, Union
import pandas as pd

class DataProcessor:
    """
    Class for processing extracted data.
    """
    
    def __init__(self):
        """Initialize the data processor."""
        pass
    
    def process_excel_data(self, data: Dict[str, pd.DataFrame], question: str) -> str:
        """
        Process data extracted from an Excel file.
        
        Args:
            data: Dictionary mapping sheet names to DataFrames
            question: The question to answer
            
        Returns:
            Answer to the question
        """
        # Convert question to lowercase for easier matching
        question_lower = question.lower()
        
        # Handle specific question types
        if 'oldest' in question_lower:
            return self._find_oldest_item(data, question_lower)
        elif 'count' in question_lower or 'how many' in question_lower:
            return self._count_items(data, question_lower)
        elif 'average' in question_lower or 'mean' in question_lower:
            return self._calculate_average(data, question_lower)
        elif 'total' in question_lower or 'sum' in question_lower:
            return self._calculate_total(data, question_lower)
        elif 'maximum' in question_lower or 'highest' in question_lower:
            return self._find_maximum(data, question_lower)
        elif 'minimum' in question_lower or 'lowest' in question_lower:
            return self._find_minimum(data, question_lower)
        else:
            # Try to extract specific information
            return self._extract_specific_info(data, question_lower)
    
    def _find_oldest_item(self, data: Dict[str, pd.DataFrame], question: str) -> str:
        """Find the oldest item in the data."""
        # Look for mentions of specific columns or items
        year_columns = ['year', 'date', 'time', 'created', 'modified', 'release']
        item_type = None
        
        # Try to extract the type of item we're looking for
        item_types = [
            'movie', 'film', 'book', 'song', 'album', 'game', 'video game',
            'dvd', 'cd', 'blu-ray', 'blu ray', 'record', 'cassette', 'vhs'
        ]
        for item in item_types:
            if item in question:
                item_type = item
                break
                
        # Iterate through sheets and find the oldest item
        oldest_year = float('inf')
        oldest_item = None
        
        for sheet_name, df in data.items():
            # Skip empty sheets
            if df.empty:
                continue
                
            # Try to find year/date columns
            year_col = None
            for col in df.columns:
                if any(year_term in col.lower() for year_term in year_columns):
                    year_col = col
                    break
                    
            if year_col is None:
                # If no obvious year column, look for columns with numeric values
                for col in df.columns:
                    if pd.api.types.is_numeric_dtype(df[col]):
                        try:
                            # Check if values might be years (between 1900 and current year)
                            if df[col].min() >= 1900 and df[col].max() <= 2025:
                                year_col = col
                                break
                        except:
                            continue
                            
            if year_col is not None:
                # Find title/name column
                title_col = None
                title_columns = ['title', 'name', 'item', 'product', 'description']
                
                for col in df.columns:
                    if any(title_term in col.lower() for title_term in title_columns):
                        title_col = col
                        break
                        
                if title_col is None and len(df.columns) > 1:
                    # If no obvious title column, use the first non-year column
                    for col in df.columns:
                        if col != year_col:
                            title_col = col
                            break
                            
                # Filter by item type if specified
                if item_type:
                    filtered_df = df
                    
                    # Look for a column that might contain item types
                    type_col = None
                    type_columns = ['type', 'category', 'format', 'medium', 'platform']
                    
                    for col in df.columns:
                        if any(type_term in col.lower() for type_term in type_columns):
                            type_col = col
                            break
                            
                    if type_col:
                        # Filter by item type
                        filtered_df = df[df[type_col].astype(str).str.lower().str.contains(item_type.lower())]
                else:
                    filtered_df = df
                    
                if not filtered_df.empty and title_col:
                    try:
                        # Find the row with the minimum year
                        min_year_idx = filtered_df[year_col].astype(float).idxmin()
                        min_year = filtered_df.loc[min_year_idx, year_col]
                        
                        if min_year < oldest_year:
                            oldest_year = min_year
                            oldest_item = filtered_df.loc[min_year_idx, title_col]
                    except:
                        continue
                        
        if oldest_item:
            return str(oldest_item)
        else:
            return "Could not determine the oldest item from the data."
    
    def _count_items(self, data: Dict[str, pd.DataFrame], question: str) -> str:
        """Count items matching specific criteria."""
        # Extract conditions from the question
        conditions = self._extract_conditions(question)
        
        total_count = 0
        
        for sheet_name, df in data.items():
            # Skip empty sheets
            if df.empty:
                continue
                
            # Apply conditions to filter the DataFrame
            filtered_df = df
            
            for condition in conditions:
                col = condition.get('column')
                value = condition.get('value')
                operator = condition.get('operator', '=')
                
                if col and value is not None:
                    # Find the best matching column
                    best_col = self._find_best_matching_column(df, col)
                    
                    if best_col:
                        try:
                            if operator == '=':
                                filtered_df = filtered_df[filtered_df[best_col].astype(str).str.lower() == str(value).lower()]
                            elif operator == '>':
                                filtered_df = filtered_df[filtered_df[best_col] > value]
                            elif operator == '<':
                                filtered_df = filtered_df[filtered_df[best_col] < value]
                            elif operator == '>=':
                                filtered_df = filtered_df[filtered_df[best_col] >= value]
                            elif operator == '<=':
                                filtered_df = filtered_df[filtered_df[best_col] <= value]
                            elif operator == 'contains':
                                filtered_df = filtered_df[filtered_df[best_col].astype(str).str.lower().str.contains(str(value).lower())]
                            elif operator == 'between':
                                if isinstance(value, list) and len(value) == 2:
                                    filtered_df = filtered_df[(filtered_df[best_col] >= value[0]) & (filtered_df[best_col] <= value[1])]
                        except:
                            continue
                            
            # Add the count from this sheet
            total_count += len(filtered_df)
            
        return str(total_count)
    
    def _calculate_average(self, data: Dict[str, pd.DataFrame], question: str) -> str:
        """Calculate the average of a column."""
        # Extract column name from the question
        column_name = self._extract_column_name(question)
        
        if not column_name:
            return "Could not determine which column to calculate the average for."
            
        for sheet_name, df in data.items():
            # Skip empty sheets
            if df.empty:
                continue
                
            # Find the best matching column
            best_col = self._find_best_matching_column(df, column_name)
            
            if best_col and pd.api.types.is_numeric_dtype(df[best_col]):
                try:
                    avg_value = df[best_col].mean()
                    return str(avg_value)
                except:
                    continue
                    
        return "Could not calculate the average from the data."
    
    def _calculate_total(self, data: Dict[str, pd.DataFrame], question: str) -> str:
        """Calculate the total of a column."""
        # Extract column name from the question
        column_name = self._extract_column_name(question)
        
        if not column_name:
            return "Could not determine which column to calculate the total for."
            
        for sheet_name, df in data.items():
            # Skip empty sheets
            if df.empty:
                continue
                
            # Find the best matching column
            best_col = self._find_best_matching_column(df, column_name)
            
            if best_col and pd.api.types.is_numeric_dtype(df[best_col]):
                try:
                    total_value = df[best_col].sum()
                    return str(total_value)
                except:
                    continue
                    
        return "Could not calculate the total from the data."
    
    def _find_maximum(self, data: Dict[str, pd.DataFrame], question: str) -> str:
        """Find the maximum value in a column."""
        # Extract column name from the question
        column_name = self._extract_column_name(question)
        
        if not column_name:
            return "Could not determine which column to find the maximum for."
            
        for sheet_name, df in data.items():
            # Skip empty sheets
            if df.empty:
                continue
                
            # Find the best matching column
            best_col = self._find_best_matching_column(df, column_name)
            
            if best_col:
                try:
                    max_value = df[best_col].max()
                    return str(max_value)
                except:
                    continue
                    
        return "Could not find the maximum value from the data."
    
    def _find_minimum(self, data: Dict[str, pd.DataFrame], question: str) -> str:
        """Find the minimum value in a column."""
        # Extract column name from the question
        column_name = self._extract_column_name(question)
        
        if not column_name:
            return "Could not determine which column to find the minimum for."
            
        for sheet_name, df in data.items():
            # Skip empty sheets
            if df.empty:
                continue
                
            # Find the best matching column
            best_col = self._find_best_matching_column(df, column_name)
            
            if best_col:
                try:
                    min_value = df[best_col].min()
                    return str(min_value)
                except:
                    continue
                    
        return "Could not find the minimum value from the data."
    
    def _extract_specific_info(self, data: Dict[str, pd.DataFrame], question: str) -> str:
        """Extract specific information from the data."""
        # Try to identify what we're looking for
        looking_for = self._extract_looking_for(question)
        conditions = self._extract_conditions(question)
        
        for sheet_name, df in data.items():
            # Skip empty sheets
            if df.empty:
                continue
                
            # Apply conditions to filter the DataFrame
            filtered_df = df
            
            for condition in conditions:
                col = condition.get('column')
                value = condition.get('value')
                operator = condition.get('operator', '=')
                
                if col and value is not None:
                    # Find the best matching column
                    best_col = self._find_best_matching_column(df, col)
                    
                    if best_col:
                        try:
                            if operator == '=':
                                filtered_df = filtered_df[filtered_df[best_col].astype(str).str.lower() == str(value).lower()]
                            elif operator == '>':
                                filtered_df = filtered_df[filtered_df[best_col] > value]
                            elif operator == '<':
                                filtered_df = filtered_df[filtered_df[best_col] < value]
                            elif operator == '>=':
                                filtered_df = filtered_df[filtered_df[best_col] >= value]
                            elif operator == '<=':
                                filtered_df = filtered_df[filtered_df[best_col] <= value]
                            elif operator == 'contains':
                                filtered_df = filtered_df[filtered_df[best_col].astype(str).str.lower().str.contains(str(value).lower())]
                            elif operator == 'between':
                                if isinstance(value, list) and len(value) == 2:
                                    filtered_df = filtered_df[(filtered_df[best_col] >= value[0]) & (filtered_df[best_col] <= value[1])]
                        except:
                            continue
                            
            # If we found matching rows and know what to look for
            if not filtered_df.empty and looking_for:
                # Find the best matching column for what we're looking for
                best_col = self._find_best_matching_column(df, looking_for)
                
                if best_col:
                    try:
                        # Return the first value
                        return str(filtered_df.iloc[0][best_col])
                    except:
                        continue
                        
        # If we couldn't extract specific information, return a more general response
        if data:
            # Return basic info about the first non-empty sheet
            for sheet_name, df in data.items():
                if not df.empty:
                    return f"The sheet contains {len(df)} rows and {len(df.columns)} columns."
                    
        return "Could not extract the requested information from the data."
    
    def _extract_conditions(self, question: str) -> List[Dict[str, Any]]:
        """Extract conditions from the question."""
        conditions = []
        
        # Check for "between" conditions
        between_pattern = r'(\w+) between (\d+) and (\d+)'
        for match in re.finditer(between_pattern, question):
            column = match.group(1)
            start = int(match.group(2))
            end = int(match.group(3))
            conditions.append({
                'column': column,
                'operator': 'between',
                'value': [start, end],
            })
            
        # Check for comparison conditions
        comparison_pattern = r'(\w+) (>|<|>=|<=|=|equals|equal to|contains) (\w+)'
        for match in re.finditer(comparison_pattern, question):
            column = match.group(1)
            op = match.group(2)
            value = match.group(3)
            
            # Convert operator text to symbols
            if op == 'equals' or op == 'equal to':
                op = '='
            elif op == 'contains':
                op = 'contains'
                
            # Try to convert value to number
            try:
                value = float(value)
            except:
                pass
                
            conditions.append({
                'column': column,
                'operator': op,
                'value': value,
            })
            
        # Check for simple equality conditions
        equality_pattern = r'(?:with|where) (\w+) (?:is|=) (\w+)'
        for match in re.finditer(equality_pattern, question):
            column = match.group(1)
            value = match.group(2)
            
            # Try to convert value to number
            try:
                value = float(value)
            except:
                pass
                
            conditions.append({
                'column': column,
                'operator': '=',
                'value': value,
            })
            
        return conditions
    
    def _extract_column_name(self, question: str) -> Optional[str]:
        """Extract column name from the question."""
        # Check for direct mentions of columns
        column_pattern = r'(?:column|field) (?:named|called) ["\']?(\w+)["\']?'
        match = re.search(column_pattern, question)
        if match:
            return match.group(1)
            
        # Look for common column references
        common_columns = [
            'year', 'date', 'time', 'name', 'title', 'price', 'cost',
            'amount', 'quantity', 'total', 'value', 'age', 'rating',
            'score', 'grade', 'salary', 'income', 'revenue', 'profit',
            'loss', 'height', 'weight', 'length', 'width', 'depth',
            'area', 'volume'
        ]
        
        for col in common_columns:
            if col in question:
                return col
                
        return None
    
    def _extract_looking_for(self, question: str) -> Optional[str]:
        """Extract what we're looking for from the question."""
        # Check for direct mentions of what we're looking for
        looking_for_pattern = r'(?:what is|what are|find|get|return) the (\w+)'
        match = re.search(looking_for_pattern, question)
        if match:
            return match.group(1)
            
        # Look for common things we might be looking for
        common_items = [
            'name', 'title', 'price', 'cost', 'amount', 'quantity',
            'total', 'value', 'age', 'rating', 'score', 'grade',
            'salary', 'income', 'revenue', 'profit', 'loss',
            'height', 'weight', 'length', 'width', 'depth',
            'area', 'volume', 'year', 'date', 'time'
        ]
        
        for item in common_items:
            if item in question:
                return item
                
        return None
    
    def _find_best_matching_column(self, df: pd.DataFrame, column_name: str) -> Optional[str]:
        """Find the best matching column in a DataFrame."""
        # Check for exact match
        if column_name in df.columns:
            return column_name
            
        # Check for case-insensitive match
        for col in df.columns:
            if col.lower() == column_name.lower():
                return col
                
        # Check for partial match
        for col in df.columns:
            if column_name.lower() in col.lower():
                return col
                
        return None
    
    def process_csv_data(self, data: pd.DataFrame, question: str) -> str:
        """
        Process data extracted from a CSV file.
        
        Args:
            data: DataFrame containing the CSV data
            question: The question to answer
            
        Returns:
            Answer to the question
        """
        # Wrap in a dictionary to reuse Excel processing logic
        return self.process_excel_data({'Sheet1': data}, question)
    
    def process_text_data(self, data: str, question: str) -> str:
        """
        Process data extracted from a text file.
        
        Args:
            data: Text content of the file
            question: The question to answer
            
        Returns:
            Answer to the question
        """
        question_lower = question.lower()
        
        # Handle specific question types
        if 'count' in question_lower or 'how many' in question_lower:
            # Count occurrences of a word or phrase
            count_pattern = r'(?:count|how many) (?:occurrences of|instances of|times) ["\']?([^"\']+)["\']?'
            match = re.search(count_pattern, question_lower)
            if match:
                term = match.group(1)
                count = data.lower().count(term.lower())
                return str(count)
                
        # Check if the question is asking for a specific line
        line_pattern = r'(?:what is|what does|what are|show|return) (?:the|on) (?:line|lines) (\d+)(?:\s*(?:to|-)\s*(\d+))?'
        match = re.search(line_pattern, question_lower)
        if match:
            start_line = int(match.group(1))
            end_line = int(match.group(2)) if match.group(2) else start_line
            
            lines = data.split('\n')
            if start_line <= len(lines) and end_line <= len(lines):
                return '\n'.join(lines[start_line-1:end_line])
                
        # Check if the question is asking for a specific paragraph
        para_pattern = r'(?:what is|what does|what are|show|return) (?:the|in) paragraph (\d+)(?:\s*(?:to|-)\s*(\d+))?'
        match = re.search(para_pattern, question_lower)
        if match:
            start_para = int(match.group(1))
            end_para = int(match.group(2)) if match.group(2) else start_para
            
            paragraphs = re.split(r'\n\s*\n', data)
            if start_para <= len(paragraphs) and end_para <= len(paragraphs):
                return '\n\n'.join(paragraphs[start_para-1:end_para])
                
        # Check for specific information requests
        info_pattern = r'(?:what|who|where|when|why|how) (?:is|are|was|were|does|do|did) ([^?]+)'
        match = re.search(info_pattern, question_lower)
        if match:
            info = match.group(1).strip()
            
            # Look for this information in the text
            sentences = re.split(r'(?<=[.!?])\s+', data)
            for sentence in sentences:
                if info.lower() in sentence.lower():
                    return sentence.strip()
                    
        # If nothing specific was found, return a generic summary
        words = data.split()
        return f"The text contains {len(words)} words and {len(data.split('. '))} sentences."
    
    def process_pdf_data(self, data: Dict[int, str], question: str) -> str:
        """
        Process data extracted from a PDF file.
        
        Args:
            data: Dictionary mapping page numbers to text content
            question: The question to answer
            
        Returns:
            Answer to the question
        """
        question_lower = question.lower()
        
        # Check if the question is asking for a specific page
        page_pattern = r'(?:what is|what does|what are|show|return) (?:on|in) page (\d+)'
        match = re.search(page_pattern, question_lower)
        if match:
            page_num = int(match.group(1))
            if page_num in data:
                return data[page_num]
            else:
                return f"Page {page_num} not found in the PDF."
                
        # Check if the question is asking for a specific information across all pages
        info_pattern = r'(?:what|who|where|when|why|how) (?:is|are|was|were|does|do|did) ([^?]+)'
        match = re.search(info_pattern, question_lower)
        if match:
            info = match.group(1).strip()
            
            # Look for this information in all pages
            for page_num, content in data.items():
                sentences = re.split(r'(?<=[.!?])\s+', content)
                for sentence in sentences:
                    if info.lower() in sentence.lower():
                        return sentence.strip()
                        
        # If nothing specific was found, combine all text and return a summary
        all_text = ' '.join(data.values())
        words = all_text.split()
        return f"The PDF contains {len(data)} pages and approximately {len(words)} words."
    
    def process_image_metadata(self, metadata: Dict[str, Any], question: str) -> str:
        """
        Process metadata extracted from an image file.
        
        Args:
            metadata: Dictionary containing image metadata
            question: The question to answer
            
        Returns:
            Answer to the question
        """
        question_lower = question.lower()
        
        # Handle specific question types
        if 'format' in question_lower or 'type' in question_lower:
            return metadata.get('format', 'Unknown format')
        elif 'size' in question_lower or 'resolution' in question_lower:
            width = metadata.get('width', 0)
            height = metadata.get('height', 0)
            return f"{width}x{height}"
        elif 'width' in question_lower:
            return str(metadata.get('width', 0))
        elif 'height' in question_lower:
            return str(metadata.get('height', 0))
        elif 'mode' in question_lower or 'color' in question_lower:
            return metadata.get('mode', 'Unknown mode')
        elif 'exif' in question_lower:
            exif = metadata.get('exif', {})
            if exif:
                return str(exif)
            else:
                return "No EXIF data found."
                
        # If nothing specific was found, return basic information
        return f"Image format: {metadata.get('format', 'Unknown')}, Size: {metadata.get('width', 0)}x{metadata.get('height', 0)}, Mode: {metadata.get('mode', 'Unknown')}"
    
    def process_docx_data(self, data: str, question: str) -> str:
        """
        Process data extracted from a Word document.
        
        Args:
            data: Text content of the document
            question: The question to answer
            
        Returns:
            Answer to the question
        """
        # Similar to text processing
        return self.process_text_data(data, question)
    
    def process_pptx_data(self, data: Dict[int, str], question: str) -> str:
        """
        Process data extracted from a PowerPoint presentation.
        
        Args:
            data: Dictionary mapping slide numbers to text content
            question: The question to answer
            
        Returns:
            Answer to the question
        """
        question_lower = question.lower()
        
        # Check if the question is asking for a specific slide
        slide_pattern = r'(?:what is|what does|what are|show|return) (?:on|in) slide (\d+)'
        match = re.search(slide_pattern, question_lower)
        if match:
            slide_num = int(match.group(1))
            if slide_num in data:
                return data[slide_num]
            else:
                return f"Slide {slide_num} not found in the presentation."
                
        # Check if the question is asking for a specific information across all slides
        info_pattern = r'(?:what|who|where|when|why|how) (?:is|are|was|were|does|do|did) ([^?]+)'
        match = re.search(info_pattern, question_lower)
        if match:
            info = match.group(1).strip()
            
            # Look for this information in all slides
            for slide_num, content in data.items():
                if info.lower() in content.lower():
                    return content.strip()
                    
        # If nothing specific was found, return a summary
        return f"The presentation contains {len(data)} slides."
    
    def process_json_data(self, data: Dict[str, Any], question: str) -> str:
        """
        Process data extracted from a JSON file.
        
        Args:
            data: Parsed JSON content
            question: The question to answer
            
        Returns:
            Answer to the question
        """
        question_lower = question.lower()
        
        # Check if the question is asking for a specific key
        key_pattern = r'(?:what is|what are|show|return) (?:the|in) ["\']?(\w+)["\']?'
        match = re.search(key_pattern, question_lower)
        if match:
            key = match.group(1)
            
            # Look for this key in the JSON
            if key in data:
                return str(data[key])
                
            # Look for nested keys
            for k, v in data.items():
                if isinstance(v, dict) and key in v:
                    return str(v[key])
                    
        # If nothing specific was found, return a summary
        return f"The JSON contains {len(data)} top-level keys: {', '.join(data.keys())}"
    
    def process_zip_data(self, data: Dict[str, Any], question: str) -> str:
        """
        Process data extracted from a ZIP archive.
        
        Args:
            data: Dictionary containing information about the archive
            question: The question to answer
            
        Returns:
            Answer to the question
        """
        question_lower = question.lower()
        
        # Handle specific question types
        if 'how many' in question_lower or 'count' in question_lower:
            if 'files' in question_lower:
                return str(len(data.get('files', [])))
                
        # Check if the question is asking for a specific file
        file_pattern = r'(?:does it contain|is there) (?:a file named|a file called) ["\']?([^"\']+)["\']?'
        match = re.search(file_pattern, question_lower)
        if match:
            filename = match.group(1)
            
            # Check if the file exists in the archive
            for file_info in data.get('files', []):
                if filename.lower() in file_info.get('filename', '').lower():
                    return f"Yes, the archive contains {file_info['filename']} ({file_info['size']} bytes)"
                    
            return f"No, the archive does not contain a file named {filename}."
            
        # If nothing specific was found, return a summary
        return f"The ZIP archive contains {len(data.get('files', []))} files."
    
    def process_pdb_data(self, data: Dict[str, Any], question: str) -> str:
        """
        Process data extracted from a PDB file.
        
        Args:
            data: Dictionary containing information about the PDB file
            question: The question to answer
            
        Returns:
            Answer to the question
        """
        question_lower = question.lower()
        
        # Handle specific question types
        if 'title' in question_lower:
            return data.get('title', 'No title found.')
        elif 'header' in question_lower:
            return data.get('header', 'No header found.')
        elif 'compound' in question_lower or 'compounds' in question_lower:
            compounds = data.get('compounds', [])
            if compounds:
                return '\n'.join(compounds)
            else:
                return 'No compounds found.'
        elif 'author' in question_lower or 'authors' in question_lower:
            authors = data.get('authors', [])
            if authors:
                return '\n'.join(authors)
            else:
                return 'No authors found.'
        elif 'atoms' in question_lower or 'atom count' in question_lower:
            return str(data.get('atoms_count', 0))
            
        # If nothing specific was found, return a summary
        return f"PDB file with title: {data.get('title', 'No title')}, containing {data.get('atoms_count', 0)} atoms."
    
    def process_python_data(self, data: Dict[str, Any], question: str) -> str:
        """
        Process data extracted from a Python file.
        
        Args:
            data: Dictionary containing information about the Python file
            question: The question to answer
            
        Returns:
            Answer to the question
        """
        question_lower = question.lower()
        
        # Handle specific question types
        if 'class' in question_lower or 'classes' in question_lower:
            classes = data.get('classes', [])
            if classes:
                class_names = [c['name'] for c in classes]
                return ', '.join(class_names)
            else:
                return 'No classes found in the file.'
        elif 'function' in question_lower or 'functions' in question_lower:
            functions = data.get('functions', [])
            if functions:
                func_names = [f['name'] for f in functions]
                return ', '.join(func_names)
            else:
                return 'No functions found in the file.'
        elif 'import' in question_lower or 'imports' in question_lower:
            imports = data.get('imports', [])
            if imports:
                import_strs = []
                for imp in imports:
                    if imp.get('from'):
                        import_strs.append(f"from {imp['from']} import {imp['import']}")
                    else:
                        import_strs.append(f"import {imp['import']}")
                return '\n'.join(import_strs)
            else:
                return 'No imports found in the file.'
                
        # Check if the question is asking for a specific class or function
        class_pattern = r'(?:what is|what does) (?:the class|class) ["\']?(\w+)["\']?'
        match = re.search(class_pattern, question_lower)
        if match:
            class_name = match.group(1)
            
            # Look for this class in the data
            for cls in data.get('classes', []):
                if cls['name'].lower() == class_name.lower():
                    parent = f", inherits from {cls['parent']}" if cls['parent'] else ""
                    return f"Class {cls['name']}{parent}"
                    
        func_pattern = r'(?:what is|what does) (?:the function|function) ["\']?(\w+)["\']?'
        match = re.search(func_pattern, question_lower)
        if match:
            func_name = match.group(1)
            
            # Look for this function in the data
            for func in data.get('functions', []):
                if func['name'].lower() == func_name.lower():
                    return f"Function {func['name']}({func['params']})"
                    
        # If nothing specific was found, look for the code of a specific function or class
        code_pattern = r'(?:show|return) (?:the code for|code of) (?:the )?(?:function|class) ["\']?(\w+)["\']?'
        match = re.search(code_pattern, question_lower)
        if match:
            entity_name = match.group(1)
            content = data.get('content', '')
            
            # Look for the code of this entity
            lines = content.split('\n')
            entity_lines = []
            in_entity = False
            indent = 0
            
            for i, line in enumerate(lines):
                # Check for class or function definition
                if re.match(rf'(class|def)\s+{re.escape(entity_name)}\s*\(', line):
                    in_entity = True
                    entity_lines.append(line)
                    indent = len(line) - len(line.lstrip())
                    continue
                    
                if in_entity:
                    # Check if we're still in the entity based on indentation
                    if line.strip() and len(line) - len(line.lstrip()) <= indent:
                        in_entity = False
                    else:
                        entity_lines.append(line)
                        
            if entity_lines:
                return '\n'.join(entity_lines)
                
        # If nothing specific was found, return a summary
        return f"Python file with {len(data.get('classes', []))} classes and {len(data.get('functions', []))} functions."
    
    def process_jsonl_data(self, data: List[Dict[str, Any]], question: str) -> str:
        """
        Process data extracted from a JSONL file.
        
        Args:
            data: List of parsed JSON objects
            question: The question to answer
            
        Returns:
            Answer to the question
        """
        question_lower = question.lower()
        
        # Handle specific question types
        if 'how many' in question_lower or 'count' in question_lower:
            return str(len(data))
            
        # Check if the question is asking for a specific entry
        entry_pattern = r'(?:what is|what are|show|return) (?:the|in) entry (\d+)'
        match = re.search(entry_pattern, question_lower)
        if match:
            entry_num = int(match.group(1))
            if 0 <= entry_num < len(data):
                return str(data[entry_num])
            else:
                return f"Entry {entry_num} not found in the data."
                
        # Check if the question is asking for entries with a specific key-value pair
        kv_pattern = r'(?:entries|items) where ["\']?(\w+)["\']? (?:is|=|equals|contains) ["\']?([^"\']+)["\']?'
        match = re.search(kv_pattern, question_lower)
        if match:
            key = match.group(1)
            value = match.group(2)
            
            # Find entries matching the criteria
            matching_entries = []
            for entry in data:
                if key in entry and str(entry[key]).lower() == value.lower():
                    matching_entries.append(entry)
                    
            if matching_entries:
                return str(matching_entries)
            else:
                return f"No entries found where {key} = {value}."
                
        # If nothing specific was found, return a summary
        if data and isinstance(data[0], dict):
            keys = list(data[0].keys())
            return f"The data contains {len(data)} entries with keys: {', '.join(keys)}"
        else:
            return f"The data contains {len(data)} entries."