ai_agents_final / agent /utils /question_analyzer.py
Arbnor Tefiki
Add some debugging tools
f011b22
raw
history blame
11 kB
"""
Utilities for analyzing and understanding questions.
"""
import re
import json
import os
from typing import Dict, Any, List, Optional, Tuple, Set
class QuestionAnalyzer:
"""
Class for analyzing and understanding questions.
"""
def __init__(self, resource_dir: str, metadata_path: Optional[str] = None):
"""
Initialize the question analyzer.
Args:
resource_dir: Directory containing resource files
metadata_path: Path to the metadata file (optional)
"""
self.resource_dir = resource_dir
self.metadata_path = metadata_path or os.path.join(resource_dir, 'metadata.jsonl')
self.metadata = self._load_metadata()
def _load_metadata(self) -> Dict[str, Dict[str, Any]]:
"""
Load metadata from the metadata file.
Returns:
Dictionary mapping task IDs to metadata
"""
metadata = {}
if os.path.exists(self.metadata_path):
try:
with open(self.metadata_path, 'r', encoding='utf-8') as f:
for line in f:
entry = json.loads(line.strip())
task_id = entry.get('task_id')
if task_id:
metadata[task_id] = entry
except Exception as e:
print(f"Error loading metadata: {e}")
return metadata
def extract_file_mention(self, question: str) -> Optional[str]:
"""
Extract mentioned file name from the question.
Args:
question: The question to analyze
Returns:
Mentioned file name, or None if no file is mentioned
"""
# Look for "attached file" or "attached spreadsheet" patterns
attached_pattern = r'attached (?:file|spreadsheet|document|image|picture|pdf|excel|csv|text file|zip|archive) (?:named |called |")?([\w\.-]+)'
match = re.search(attached_pattern, question, re.IGNORECASE)
if match:
return match.group(1)
# Look for file extensions
extensions = [
'.xlsx', '.xls', '.csv', '.txt', '.pdf', '.jpg', '.jpeg',
'.png', '.docx', '.pptx', '.json', '.jsonld', '.zip', '.pdb', '.py'
]
for ext in extensions:
pattern = r'(\w+(?:-\w+)*' + re.escape(ext) + r')'
match = re.search(pattern, question, re.IGNORECASE)
if match:
return match.group(1)
return None
def find_relevant_file(self, question: str, task_id: Optional[str] = None) -> Optional[str]:
"""
Find the relevant file for a question.
Args:
question: The question to analyze
task_id: The task ID (optional)
Returns:
Path to the relevant file, or None if no file is found
"""
# Check if task_id is in metadata and has a file_name
if task_id and task_id in self.metadata:
file_name = self.metadata[task_id].get('file_name')
if file_name and file_name.strip(): # Make sure file_name is not empty
file_path = os.path.join(self.resource_dir, file_name)
if os.path.exists(file_path):
print(f"Found file in metadata for task_id {task_id}: {file_path}")
return file_path
# Try to find task_id in all metadata entries by matching the question
if not task_id:
for entry_id, entry in self.metadata.items():
if entry.get('Question') and entry.get('Question') == question:
file_name = entry.get('file_name')
if file_name and file_name.strip():
file_path = os.path.join(self.resource_dir, file_name)
if os.path.exists(file_path):
print(f"Found file in metadata by matching question: {file_path}")
return file_path
# Extract file mention from question
file_mention = self.extract_file_mention(question)
if file_mention:
# Check if the mentioned file exists
file_path = os.path.join(self.resource_dir, file_mention)
if os.path.exists(file_path):
print(f"Found file by direct mention: {file_path}")
return file_path
# Check if there's a file with a similar name
for file_name in os.listdir(self.resource_dir):
if file_mention.lower() in file_name.lower():
file_path = os.path.join(self.resource_dir, file_name)
print(f"Found file by partial name match: {file_path}")
return file_path
# Look for UUID pattern in the question which might be a file name without extension
uuid_pattern = r'([0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})'
uuid_match = re.search(uuid_pattern, question, re.IGNORECASE)
if uuid_match:
uuid = uuid_match.group(1)
for file_name in os.listdir(self.resource_dir):
if uuid in file_name:
file_path = os.path.join(self.resource_dir, file_name)
print(f"Found file by UUID match: {file_path}")
return file_path
# If no file is found, try to find a file mentioned in the metadata
if task_id and task_id in self.metadata:
# Extract keywords from the question
keywords = self._extract_keywords(question)
# Check all files in the resource directory
best_match = None
best_score = 0
for file_name in os.listdir(self.resource_dir):
# Skip metadata file
if file_name == 'metadata.jsonl':
continue
# Calculate score based on keyword matches
score = 0
for keyword in keywords:
if keyword.lower() in file_name.lower():
score += 1
if score > best_score:
best_score = score
best_match = file_name
if best_match:
file_path = os.path.join(self.resource_dir, best_match)
print(f"Found file by keyword matching: {file_path}")
return file_path
# If still no match, check the content of metadata.jsonl for clues
try:
with open(self.metadata_path, 'r', encoding='utf-8') as f:
for line in f:
entry = json.loads(line.strip())
if 'Question' in entry and entry['Question'] and 'file_name' in entry and entry['file_name']:
# Compare with current question
if self._questions_are_similar(question, entry['Question']):
file_name = entry['file_name']
file_path = os.path.join(self.resource_dir, file_name)
if os.path.exists(file_path):
print(f"Found file by similar question in metadata: {file_path}")
return file_path
except Exception as e:
print(f"Error searching metadata for similar questions: {e}")
return None
def _questions_are_similar(self, q1: str, q2: str) -> bool:
"""
Check if two questions are similar.
Args:
q1: First question
q2: Second question
Returns:
True if the questions are similar, False otherwise
"""
# Convert to lowercase and remove punctuation
q1 = re.sub(r'[^\w\s]', '', q1.lower())
q2 = re.sub(r'[^\w\s]', '', q2.lower())
# Split into words
words1 = set(q1.split())
words2 = set(q2.split())
# Calculate Jaccard similarity
intersection = len(words1.intersection(words2))
union = len(words1.union(words2))
if union == 0:
return False
similarity = intersection / union
# Return True if similarity is above threshold
return similarity > 0.5
def _extract_keywords(self, text: str) -> Set[str]:
"""
Extract keywords from text.
Args:
text: The text to analyze
Returns:
Set of keywords
"""
# Remove common stop words
stop_words = {
'a', 'an', 'the', 'and', 'or', 'but', 'if', 'then', 'else', 'when',
'at', 'from', 'by', 'for', 'with', 'about', 'against', 'between',
'into', 'through', 'during', 'before', 'after', 'above', 'below',
'to', 'of', 'in', 'on', 'is', 'are', 'was', 'were', 'be', 'been',
'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did',
'doing', 'would', 'should', 'could', 'might', 'will', 'shall',
'can', 'may', 'must', 'ought'
}
# Extract words
words = re.findall(r'\b\w+\b', text.lower())
# Filter out stop words and short words
keywords = {word for word in words if word not in stop_words and len(word) > 2}
return keywords
def analyze_question(self, question: str, task_id: Optional[str] = None) -> Dict[str, Any]:
"""
Analyze a question to understand what it's asking.
Args:
question: The question to analyze
task_id: The task ID (optional)
Returns:
Dictionary containing analysis results
"""
result = {
'question': question,
'task_id': task_id,
'file_path': None,
'keywords': list(self._extract_keywords(question)),
'expected_answer': None,
}
# Try to extract task_id from the question if not provided
if not task_id:
task_id_match = re.search(r'task_id[: ]+([\w\-]+)', question, re.IGNORECASE)
if task_id_match:
result['task_id'] = task_id_match.group(1)
task_id = result['task_id']
# Find relevant file
file_path = self.find_relevant_file(question, task_id)
if file_path:
result['file_path'] = file_path
# Get expected answer if available
if task_id and task_id in self.metadata:
result['expected_answer'] = self.metadata[task_id].get('Final answer')
return result