File size: 8,670 Bytes
94b3868
 
 
 
 
 
 
8ecb1cd
 
94b3868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ecb1cd
94b3868
8ecb1cd
 
2caebe4
 
 
8ecb1cd
94b3868
 
 
 
 
8ecb1cd
2caebe4
 
 
 
 
8ecb1cd
 
 
 
94b3868
8ecb1cd
 
94b3868
8ecb1cd
 
94b3868
8ecb1cd
 
 
94b3868
8ecb1cd
 
 
 
 
 
 
 
 
 
 
 
94b3868
 
 
8ecb1cd
 
 
94b3868
8ecb1cd
94b3868
 
8ecb1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
94b3868
 
 
 
 
8ecb1cd
 
 
 
 
 
 
94b3868
8ecb1cd
94b3868
 
 
 
 
8ecb1cd
 
 
 
 
94b3868
 
 
8ecb1cd
 
94b3868
 
8ecb1cd
 
 
 
 
 
 
94b3868
 
 
 
 
 
 
 
 
 
8ecb1cd
94b3868
 
8ecb1cd
 
 
 
 
 
 
 
94b3868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ecb1cd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import gradio as gr
import requests
import pandas as pd
from dotenv import load_dotenv
from functions import *
from langchain_core.messages import HumanMessage
import traceback
import time

load_dotenv()

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if not profile:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None
    username = profile.username
    print(f"User logged in: {username}")

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        graph = build_graph()
        agent = graph.invoke
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Repo URL not available"
    print(f"Agent code repo: {agent_code}")

    # Fetch questions
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []

    print(f"\n{'='*60}")
    print(f"Running agent on {len(questions_data)} questions...")
    print(f"{'='*60}\n")
    
    # Add delay between questions to avoid rate limiting
    question_delay = 3.0  # seconds between questions
    
    for idx, item in enumerate(questions_data, 1):
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        
        # Add delay between questions (except for the first one)
        if idx > 1:
            print(f"Waiting {question_delay}s before next question to avoid rate limits...")
            time.sleep(question_delay)
        
        print(f"\n--- Question {idx}/{len(questions_data)} ---")
        print(f"Task ID: {task_id}")
        print(f"Question: {question_text}")
        
        try:
            # Add timeout for each question
            start_time = time.time()
            input_messages = [HumanMessage(content=question_text)]
            
            # Invoke the agent with the question
            result = agent({"messages": input_messages})
            
            # Extract the answer from the result
            answer = "UNKNOWN"
            if "messages" in result and result["messages"]:
                # Look for the last AI message with content
                for msg in reversed(result["messages"]):
                    if hasattr(msg, "content") and isinstance(msg.content, str) and msg.content.strip():
                        # Skip planner outputs
                        if not any(msg.content.upper().startswith(prefix) for prefix in ["SEARCH:", "CALCULATE:", "DEFINE:", "WIKIPEDIA:", "REVERSE:", "DIRECT:"]):
                            answer = msg.content.strip()
                            break
            
            elapsed_time = time.time() - start_time
            print(f"Answer: {answer}")
            print(f"Time taken: {elapsed_time:.2f}s")
            
            answers_payload.append({"task_id": task_id, "submitted_answer": answer})
            results_log.append({
                "Task ID": task_id,
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
                "Submitted Answer": answer,
                "Time (s)": f"{elapsed_time:.2f}"
            })
            
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            print(f"Traceback: {traceback.format_exc()}")
            
            # Still submit UNKNOWN for errors
            answers_payload.append({"task_id": task_id, "submitted_answer": "UNKNOWN"})
            results_log.append({
                "Task ID": task_id,
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
                "Submitted Answer": f"ERROR: {str(e)[:50]}",
                "Time (s)": "N/A"
            })

    print(f"\n{'='*60}")
    print(f"Completed processing all questions")
    print(f"{'='*60}\n")

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # Summary before submission
    unknown_count = sum(1 for ans in answers_payload if ans["submitted_answer"] == "UNKNOWN")
    print(f"\nSummary before submission:")
    print(f"Total questions: {len(answers_payload)}")
    print(f"UNKNOWN answers: {unknown_count}")
    print(f"Attempted answers: {len(answers_payload) - unknown_count}")

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        
        score = result_data.get('score', 0)
        correct_count = result_data.get('correct_count', 0)
        total_attempted = result_data.get('total_attempted', 0)
        
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {score}% "
            f"({correct_count}/{total_attempted} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        
        print("\n" + "="*60)
        print("SUBMISSION RESULTS:")
        print(f"Score: {score}%")
        print(f"Correct: {correct_count}/{total_attempted}")
        print("="*60)
        
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        status_message = f"Submission Failed: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("# Enhanced GAIA Agent Evaluation Runner")
    gr.Markdown(
        """

        This enhanced agent is optimized for GAIA benchmark questions with improved:

        - Planning logic for better tool selection

        - Search capabilities with more comprehensive results

        - Mathematical expression parsing

        - Answer extraction from search results

        - Error handling and logging

        

        Target: >50% accuracy on GAIA questions

        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )


if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)

    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"   SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"   SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Enhanced GAIA Agent Evaluation...")
    demo.launch(debug=True, share=False)