Spaces:
Sleeping
Sleeping
File size: 8,670 Bytes
94b3868 8ecb1cd 94b3868 8ecb1cd 94b3868 8ecb1cd 2caebe4 8ecb1cd 94b3868 8ecb1cd 2caebe4 8ecb1cd 94b3868 8ecb1cd 94b3868 8ecb1cd 94b3868 8ecb1cd 94b3868 8ecb1cd 94b3868 8ecb1cd 94b3868 8ecb1cd 94b3868 8ecb1cd 94b3868 8ecb1cd 94b3868 8ecb1cd 94b3868 8ecb1cd 94b3868 8ecb1cd 94b3868 8ecb1cd 94b3868 8ecb1cd 94b3868 8ecb1cd 94b3868 8ecb1cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import os
import gradio as gr
import requests
import pandas as pd
from dotenv import load_dotenv
from functions import *
from langchain_core.messages import HumanMessage
import traceback
import time
load_dotenv()
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if not profile:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
username = profile.username
print(f"User logged in: {username}")
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
graph = build_graph()
agent = graph.invoke
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Repo URL not available"
print(f"Agent code repo: {agent_code}")
# Fetch questions
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"\n{'='*60}")
print(f"Running agent on {len(questions_data)} questions...")
print(f"{'='*60}\n")
# Add delay between questions to avoid rate limiting
question_delay = 3.0 # seconds between questions
for idx, item in enumerate(questions_data, 1):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
# Add delay between questions (except for the first one)
if idx > 1:
print(f"Waiting {question_delay}s before next question to avoid rate limits...")
time.sleep(question_delay)
print(f"\n--- Question {idx}/{len(questions_data)} ---")
print(f"Task ID: {task_id}")
print(f"Question: {question_text}")
try:
# Add timeout for each question
start_time = time.time()
input_messages = [HumanMessage(content=question_text)]
# Invoke the agent with the question
result = agent({"messages": input_messages})
# Extract the answer from the result
answer = "UNKNOWN"
if "messages" in result and result["messages"]:
# Look for the last AI message with content
for msg in reversed(result["messages"]):
if hasattr(msg, "content") and isinstance(msg.content, str) and msg.content.strip():
# Skip planner outputs
if not any(msg.content.upper().startswith(prefix) for prefix in ["SEARCH:", "CALCULATE:", "DEFINE:", "WIKIPEDIA:", "REVERSE:", "DIRECT:"]):
answer = msg.content.strip()
break
elapsed_time = time.time() - start_time
print(f"Answer: {answer}")
print(f"Time taken: {elapsed_time:.2f}s")
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": answer,
"Time (s)": f"{elapsed_time:.2f}"
})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
print(f"Traceback: {traceback.format_exc()}")
# Still submit UNKNOWN for errors
answers_payload.append({"task_id": task_id, "submitted_answer": "UNKNOWN"})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": f"ERROR: {str(e)[:50]}",
"Time (s)": "N/A"
})
print(f"\n{'='*60}")
print(f"Completed processing all questions")
print(f"{'='*60}\n")
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Summary before submission
unknown_count = sum(1 for ans in answers_payload if ans["submitted_answer"] == "UNKNOWN")
print(f"\nSummary before submission:")
print(f"Total questions: {len(answers_payload)}")
print(f"UNKNOWN answers: {unknown_count}")
print(f"Attempted answers: {len(answers_payload) - unknown_count}")
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
score = result_data.get('score', 0)
correct_count = result_data.get('correct_count', 0)
total_attempted = result_data.get('total_attempted', 0)
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {score}% "
f"({correct_count}/{total_attempted} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("\n" + "="*60)
print("SUBMISSION RESULTS:")
print(f"Score: {score}%")
print(f"Correct: {correct_count}/{total_attempted}")
print("="*60)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# Enhanced GAIA Agent Evaluation Runner")
gr.Markdown(
"""
This enhanced agent is optimized for GAIA benchmark questions with improved:
- Planning logic for better tool selection
- Search capabilities with more comprehensive results
- Mathematical expression parsing
- Answer extraction from search results
- Error handling and logging
Target: >50% accuracy on GAIA questions
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f" SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f" SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Enhanced GAIA Agent Evaluation...")
demo.launch(debug=True, share=False) |