Arbnor Tefiki
Add more tools and search enginge
2caebe4
raw
history blame
8.67 kB
import os
import gradio as gr
import requests
import pandas as pd
from dotenv import load_dotenv
from functions import *
from langchain_core.messages import HumanMessage
import traceback
import time
load_dotenv()
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if not profile:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
username = profile.username
print(f"User logged in: {username}")
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
graph = build_graph()
agent = graph.invoke
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Repo URL not available"
print(f"Agent code repo: {agent_code}")
# Fetch questions
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"\n{'='*60}")
print(f"Running agent on {len(questions_data)} questions...")
print(f"{'='*60}\n")
# Add delay between questions to avoid rate limiting
question_delay = 3.0 # seconds between questions
for idx, item in enumerate(questions_data, 1):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
# Add delay between questions (except for the first one)
if idx > 1:
print(f"Waiting {question_delay}s before next question to avoid rate limits...")
time.sleep(question_delay)
print(f"\n--- Question {idx}/{len(questions_data)} ---")
print(f"Task ID: {task_id}")
print(f"Question: {question_text}")
try:
# Add timeout for each question
start_time = time.time()
input_messages = [HumanMessage(content=question_text)]
# Invoke the agent with the question
result = agent({"messages": input_messages})
# Extract the answer from the result
answer = "UNKNOWN"
if "messages" in result and result["messages"]:
# Look for the last AI message with content
for msg in reversed(result["messages"]):
if hasattr(msg, "content") and isinstance(msg.content, str) and msg.content.strip():
# Skip planner outputs
if not any(msg.content.upper().startswith(prefix) for prefix in ["SEARCH:", "CALCULATE:", "DEFINE:", "WIKIPEDIA:", "REVERSE:", "DIRECT:"]):
answer = msg.content.strip()
break
elapsed_time = time.time() - start_time
print(f"Answer: {answer}")
print(f"Time taken: {elapsed_time:.2f}s")
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": answer,
"Time (s)": f"{elapsed_time:.2f}"
})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
print(f"Traceback: {traceback.format_exc()}")
# Still submit UNKNOWN for errors
answers_payload.append({"task_id": task_id, "submitted_answer": "UNKNOWN"})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": f"ERROR: {str(e)[:50]}",
"Time (s)": "N/A"
})
print(f"\n{'='*60}")
print(f"Completed processing all questions")
print(f"{'='*60}\n")
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Summary before submission
unknown_count = sum(1 for ans in answers_payload if ans["submitted_answer"] == "UNKNOWN")
print(f"\nSummary before submission:")
print(f"Total questions: {len(answers_payload)}")
print(f"UNKNOWN answers: {unknown_count}")
print(f"Attempted answers: {len(answers_payload) - unknown_count}")
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
score = result_data.get('score', 0)
correct_count = result_data.get('correct_count', 0)
total_attempted = result_data.get('total_attempted', 0)
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {score}% "
f"({correct_count}/{total_attempted} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("\n" + "="*60)
print("SUBMISSION RESULTS:")
print(f"Score: {score}%")
print(f"Correct: {correct_count}/{total_attempted}")
print("="*60)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# Enhanced GAIA Agent Evaluation Runner")
gr.Markdown(
"""
This enhanced agent is optimized for GAIA benchmark questions with improved:
- Planning logic for better tool selection
- Search capabilities with more comprehensive results
- Mathematical expression parsing
- Answer extraction from search results
- Error handling and logging
Target: >50% accuracy on GAIA questions
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f" SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f" SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Enhanced GAIA Agent Evaluation...")
demo.launch(debug=True, share=False)