Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from dotenv import load_dotenv | |
from functions import * | |
from langchain_core.messages import HumanMessage | |
load_dotenv() | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
space_id = os.getenv("SPACE_ID") | |
if not profile: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
username = profile.username | |
print(f"User logged in: {username}") | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
try: | |
graph = build_graph() | |
agent = graph.invoke | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Repo URL not available" | |
print(f"Agent code repo: {agent_code}") | |
# Fetch questions | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except Exception as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
input_messages = [HumanMessage(content=question_text)] | |
result = agent({"messages": input_messages}) | |
if "messages" in result and result["messages"]: | |
last_valid = next( | |
(m for m in reversed(result["messages"]) if hasattr(m, "content") and isinstance(m.content, str)), | |
None | |
) | |
if last_valid: | |
answer = last_valid.content.strip() | |
else: | |
answer = "UNKNOWN" | |
else: | |
answer = "UNKNOWN" | |
print("Answered with:", answer) | |
answers_payload.append({"task_id": task_id, "submitted_answer": answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": answer | |
}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
print(f"Submitting {len(answers_payload)} answers for user '{username}'...") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except Exception as e: | |
status_message = f"Submission Failed: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
Modify the code here to define your agent's logic, the tools, the necessary packages, etc... | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") | |
if space_host_startup: | |
print(f" SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: | |
print(f" SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |