Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,221 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import requests
|
4 |
-
import pandas as pd
|
5 |
-
from dotenv import load_dotenv
|
6 |
-
from functions import *
|
7 |
-
from langchain_core.messages import HumanMessage
|
8 |
-
import traceback
|
9 |
-
import time
|
10 |
-
|
11 |
-
load_dotenv()
|
12 |
-
|
13 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
-
|
15 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
16 |
-
space_id = os.getenv("SPACE_ID")
|
17 |
-
|
18 |
-
if not profile:
|
19 |
-
print("User not logged in.")
|
20 |
-
return "Please Login to Hugging Face with the button.", None
|
21 |
-
username = profile.username
|
22 |
-
print(f"User logged in: {username}")
|
23 |
-
|
24 |
-
api_url = DEFAULT_API_URL
|
25 |
-
questions_url = f"{api_url}/questions"
|
26 |
-
submit_url = f"{api_url}/submit"
|
27 |
-
|
28 |
-
try:
|
29 |
-
graph = build_graph()
|
30 |
-
agent = graph.invoke
|
31 |
-
except Exception as e:
|
32 |
-
print(f"Error instantiating agent: {e}")
|
33 |
-
return f"Error initializing agent: {e}", None
|
34 |
-
|
35 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Repo URL not available"
|
36 |
-
print(f"Agent code repo: {agent_code}")
|
37 |
-
|
38 |
-
# Fetch questions
|
39 |
-
try:
|
40 |
-
response = requests.get(questions_url, timeout=15)
|
41 |
-
response.raise_for_status()
|
42 |
-
questions_data = response.json()
|
43 |
-
if not questions_data:
|
44 |
-
print("Fetched questions list is empty.")
|
45 |
-
return "Fetched questions list is empty or invalid format.", None
|
46 |
-
print(f"Fetched {len(questions_data)} questions.")
|
47 |
-
except Exception as e:
|
48 |
-
print(f"Error fetching questions: {e}")
|
49 |
-
return f"Error fetching questions: {e}", None
|
50 |
-
|
51 |
-
results_log = []
|
52 |
-
answers_payload = []
|
53 |
-
|
54 |
-
print(f"\n{'='*60}")
|
55 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
56 |
-
print(f"{'='*60}\n")
|
57 |
-
|
58 |
-
# Add delay between questions to avoid rate limiting
|
59 |
-
question_delay = 3.0 # seconds between questions
|
60 |
-
|
61 |
-
for idx, item in enumerate(questions_data, 1):
|
62 |
-
task_id = item.get("task_id")
|
63 |
-
question_text = item.get("question")
|
64 |
-
if not task_id or question_text is None:
|
65 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
66 |
-
continue
|
67 |
-
|
68 |
-
# Add delay between questions (except for the first one)
|
69 |
-
if idx > 1:
|
70 |
-
print(f"Waiting {question_delay}s before next question to avoid rate limits...")
|
71 |
-
time.sleep(question_delay)
|
72 |
-
|
73 |
-
print(f"\n--- Question {idx}/{len(questions_data)} ---")
|
74 |
-
print(f"Task ID: {task_id}")
|
75 |
-
print(f"Question: {question_text}")
|
76 |
-
|
77 |
-
try:
|
78 |
-
# Add timeout for each question
|
79 |
-
start_time = time.time()
|
80 |
-
input_messages = [HumanMessage(content=question_text)]
|
81 |
-
|
82 |
-
# Invoke the agent with the question
|
83 |
-
result = agent({"messages": input_messages})
|
84 |
-
|
85 |
-
# Extract the answer from the result
|
86 |
-
answer = "UNKNOWN"
|
87 |
-
if "messages" in result and result["messages"]:
|
88 |
-
# Look for the last AI message with content
|
89 |
-
for msg in reversed(result["messages"]):
|
90 |
-
if hasattr(msg, "content") and isinstance(msg.content, str) and msg.content.strip():
|
91 |
-
# Skip planner outputs
|
92 |
-
if not any(msg.content.upper().startswith(prefix) for prefix in ["SEARCH:", "CALCULATE:", "DEFINE:", "WIKIPEDIA:", "REVERSE:", "DIRECT:"]):
|
93 |
-
answer = msg.content.strip()
|
94 |
-
break
|
95 |
-
|
96 |
-
elapsed_time = time.time() - start_time
|
97 |
-
print(f"Answer: {answer}")
|
98 |
-
print(f"Time taken: {elapsed_time:.2f}s")
|
99 |
-
|
100 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
|
101 |
-
results_log.append({
|
102 |
-
"Task ID": task_id,
|
103 |
-
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
|
104 |
-
"Submitted Answer": answer,
|
105 |
-
"Time (s)": f"{elapsed_time:.2f}"
|
106 |
-
})
|
107 |
-
|
108 |
-
except Exception as e:
|
109 |
-
print(f"Error running agent on task {task_id}: {e}")
|
110 |
-
print(f"Traceback: {traceback.format_exc()}")
|
111 |
-
|
112 |
-
# Still submit UNKNOWN for errors
|
113 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": "UNKNOWN"})
|
114 |
-
results_log.append({
|
115 |
-
"Task ID": task_id,
|
116 |
-
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
|
117 |
-
"Submitted Answer": f"ERROR: {str(e)[:50]}",
|
118 |
-
"Time (s)": "N/A"
|
119 |
-
})
|
120 |
-
|
121 |
-
print(f"\n{'='*60}")
|
122 |
-
print(f"Completed processing all questions")
|
123 |
-
print(f"{'='*60}\n")
|
124 |
-
|
125 |
-
if not answers_payload:
|
126 |
-
print("Agent did not produce any answers to submit.")
|
127 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
128 |
-
|
129 |
-
# Summary before submission
|
130 |
-
unknown_count = sum(1 for ans in answers_payload if ans["submitted_answer"] == "UNKNOWN")
|
131 |
-
print(f"\nSummary before submission:")
|
132 |
-
print(f"Total questions: {len(answers_payload)}")
|
133 |
-
print(f"UNKNOWN answers: {unknown_count}")
|
134 |
-
print(f"Attempted answers: {len(answers_payload) - unknown_count}")
|
135 |
-
|
136 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
137 |
-
print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
|
138 |
-
|
139 |
-
try:
|
140 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
141 |
-
response.raise_for_status()
|
142 |
-
result_data = response.json()
|
143 |
-
|
144 |
-
score = result_data.get('score', 0)
|
145 |
-
correct_count = result_data.get('correct_count', 0)
|
146 |
-
total_attempted = result_data.get('total_attempted', 0)
|
147 |
-
|
148 |
-
final_status = (
|
149 |
-
f"Submission Successful!\n"
|
150 |
-
f"User: {result_data.get('username')}\n"
|
151 |
-
f"Overall Score: {score}% "
|
152 |
-
f"({correct_count}/{total_attempted} correct)\n"
|
153 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
154 |
-
)
|
155 |
-
|
156 |
-
print("\n" + "="*60)
|
157 |
-
print("SUBMISSION RESULTS:")
|
158 |
-
print(f"Score: {score}%")
|
159 |
-
print(f"Correct: {correct_count}/{total_attempted}")
|
160 |
-
print("="*60)
|
161 |
-
|
162 |
-
results_df = pd.DataFrame(results_log)
|
163 |
-
return final_status, results_df
|
164 |
-
except Exception as e:
|
165 |
-
status_message = f"Submission Failed: {e}"
|
166 |
-
print(status_message)
|
167 |
-
results_df = pd.DataFrame(results_log)
|
168 |
-
return status_message, results_df
|
169 |
-
|
170 |
-
# Gradio UI
|
171 |
-
with gr.Blocks() as demo:
|
172 |
-
gr.Markdown("# Enhanced GAIA Agent Evaluation Runner")
|
173 |
-
gr.Markdown(
|
174 |
-
"""
|
175 |
-
This enhanced agent is optimized for GAIA benchmark questions with improved:
|
176 |
-
- Planning logic for better tool selection
|
177 |
-
- Search capabilities with more comprehensive results
|
178 |
-
- Mathematical expression parsing
|
179 |
-
- Answer extraction from search results
|
180 |
-
- Error handling and logging
|
181 |
-
|
182 |
-
Target: >50% accuracy on GAIA questions
|
183 |
-
"""
|
184 |
-
)
|
185 |
-
|
186 |
-
gr.LoginButton()
|
187 |
-
|
188 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
189 |
-
|
190 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
191 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
192 |
-
|
193 |
-
run_button.click(
|
194 |
-
fn=run_and_submit_all,
|
195 |
-
outputs=[status_output, results_table]
|
196 |
-
)
|
197 |
-
|
198 |
-
|
199 |
-
if __name__ == "__main__":
|
200 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
201 |
-
|
202 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
203 |
-
space_id_startup = os.getenv("SPACE_ID")
|
204 |
-
|
205 |
-
if space_host_startup:
|
206 |
-
print(f" SPACE_HOST found: {space_host_startup}")
|
207 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
208 |
-
else:
|
209 |
-
print("SPACE_HOST environment variable not found (running locally?).")
|
210 |
-
|
211 |
-
if space_id_startup:
|
212 |
-
print(f" SPACE_ID found: {space_id_startup}")
|
213 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
214 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
215 |
-
else:
|
216 |
-
print("SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
217 |
-
|
218 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
219 |
-
|
220 |
-
print("Launching Gradio Interface for Enhanced GAIA Agent Evaluation...")
|
221 |
-
demo.launch(debug=True, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|