Spaces:
Sleeping
Sleeping
Delete functions.py
Browse files- functions.py +0 -394
functions.py
DELETED
@@ -1,394 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import json
|
4 |
-
from langgraph.graph import START, StateGraph, MessagesState
|
5 |
-
from langgraph.prebuilt import ToolNode
|
6 |
-
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, ToolMessage
|
7 |
-
from huggingface_hub import InferenceClient
|
8 |
-
from custom_tools import TOOLS
|
9 |
-
|
10 |
-
HF_TOKEN = os.getenv("HUGGINGFACE_API_TOKEN")
|
11 |
-
client = InferenceClient(token=HF_TOKEN)
|
12 |
-
|
13 |
-
# Much more intelligent planner that can handle various question types
|
14 |
-
planner_prompt = SystemMessage(content="""You are an intelligent planning assistant for the GAIA benchmark. Analyze each question carefully and choose the appropriate approach.
|
15 |
-
|
16 |
-
QUESTION TYPE ANALYSIS:
|
17 |
-
|
18 |
-
1. MULTIMODAL QUESTIONS (with files/images/videos/audio):
|
19 |
-
- If question mentions "attached file", "image", "video", "audio", "Excel", ".mp3", ".jpg", etc.
|
20 |
-
- These require file access which we don't have
|
21 |
-
- Try to answer based on general knowledge or return "REASON: [explanation]"
|
22 |
-
|
23 |
-
2. LOGICAL/MATHEMATICAL REASONING:
|
24 |
-
- Math problems with given data (like multiplication tables)
|
25 |
-
- Logic puzzles (like reverse text)
|
26 |
-
- Problems requiring analysis of given information
|
27 |
-
- Use "REASON:" to work through these step by step
|
28 |
-
|
29 |
-
3. FACTUAL QUESTIONS:
|
30 |
-
- Questions about real people, places, events, dates
|
31 |
-
- Use "SEARCH:" for these
|
32 |
-
|
33 |
-
4. CALCULATION:
|
34 |
-
- Pure mathematical expressions
|
35 |
-
- Use "CALCULATE:" only for numeric expressions
|
36 |
-
|
37 |
-
IMPORTANT PATTERNS:
|
38 |
-
- "attached file" / "Excel file" / "audio recording" β REASON: Cannot access files
|
39 |
-
- "reverse" / "backwards" β Check if it's asking to reverse text or just mentioning the word
|
40 |
-
- Tables/data provided in question β REASON: Analyze the given data
|
41 |
-
- YouTube videos β REASON: Cannot access video content
|
42 |
-
- Images/chess positions β REASON: Cannot see images
|
43 |
-
|
44 |
-
OUTPUT FORMAT:
|
45 |
-
- "SEARCH: [specific query]" - for factual questions
|
46 |
-
- "CALCULATE: [expression]" - for pure math
|
47 |
-
- "REVERSE: [text]" - ONLY for explicit text reversal
|
48 |
-
- "REASON: [step-by-step reasoning]" - for logic/analysis
|
49 |
-
- "WIKIPEDIA: [topic]" - for general topics
|
50 |
-
- "UNKNOWN: [explanation]" - when impossible to answer
|
51 |
-
|
52 |
-
Think step by step about what the question is really asking.""")
|
53 |
-
|
54 |
-
def planner_node(state: MessagesState):
|
55 |
-
messages = state["messages"]
|
56 |
-
|
57 |
-
# Get the last human message
|
58 |
-
question = None
|
59 |
-
for msg in reversed(messages):
|
60 |
-
if isinstance(msg, HumanMessage):
|
61 |
-
question = msg.content
|
62 |
-
break
|
63 |
-
|
64 |
-
if not question:
|
65 |
-
return {"messages": [AIMessage(content="UNKNOWN: No question provided")]}
|
66 |
-
|
67 |
-
question_lower = question.lower()
|
68 |
-
|
69 |
-
# Check for multimodal content first
|
70 |
-
multimodal_indicators = [
|
71 |
-
'attached', 'file', 'excel', 'image', 'video', 'audio', '.mp3', '.jpg',
|
72 |
-
'.png', '.xlsx', '.wav', 'youtube.com', 'watch?v=', 'recording',
|
73 |
-
'listen to', 'examine the', 'review the', 'in the image'
|
74 |
-
]
|
75 |
-
|
76 |
-
if any(indicator in question_lower for indicator in multimodal_indicators):
|
77 |
-
# Some we can handle with reasoning
|
78 |
-
if 'youtube' in question_lower:
|
79 |
-
return {"messages": [AIMessage(content="UNKNOWN: Cannot access YouTube video content")]}
|
80 |
-
elif any(x in question_lower for x in ['audio', '.mp3', 'recording', 'listen']):
|
81 |
-
return {"messages": [AIMessage(content="UNKNOWN: Cannot access audio files")]}
|
82 |
-
elif any(x in question_lower for x in ['excel', '.xlsx', 'attached file']):
|
83 |
-
return {"messages": [AIMessage(content="UNKNOWN: Cannot access attached files")]}
|
84 |
-
elif any(x in question_lower for x in ['image', '.jpg', '.png', 'chess position']):
|
85 |
-
return {"messages": [AIMessage(content="UNKNOWN: Cannot see images")]}
|
86 |
-
|
87 |
-
# Check for explicit reverse text request
|
88 |
-
if 'reverse' in question_lower or 'backwards' in question_lower:
|
89 |
-
# Check if it's actually asking to reverse text
|
90 |
-
if '.rewsna' in question or 'etirw' in question: # These are reversed words
|
91 |
-
# This is the reversed sentence puzzle
|
92 |
-
return {"messages": [AIMessage(content="REVERSE: .rewsna eht sa \"tfel\" drow eht fo etisoppo eht etirw ,ecnetnes siht dnatsrednu uoy fI")]}
|
93 |
-
elif re.search(r'reverse\s+(?:the\s+)?(?:text|string|word|letters?)\s*["\']?([^"\']+)["\']?', question_lower):
|
94 |
-
match = re.search(r'reverse\s+(?:the\s+)?(?:text|string|word|letters?)\s*["\']?([^"\']+)["\']?', question_lower)
|
95 |
-
if match:
|
96 |
-
return {"messages": [AIMessage(content=f"REVERSE: {match.group(1)}")]}
|
97 |
-
|
98 |
-
# Check for logical/reasoning questions with provided data
|
99 |
-
if '|' in question and '*' in question: # Likely a table
|
100 |
-
return {"messages": [AIMessage(content=f"REASON: Analyze multiplication table for commutativity")]}
|
101 |
-
|
102 |
-
if 'grocery list' in question_lower and 'vegetables' in question_lower:
|
103 |
-
return {"messages": [AIMessage(content="REASON: Categorize vegetables from grocery list botanically")]}
|
104 |
-
|
105 |
-
# Pure calculation
|
106 |
-
if re.match(r'^[\d\s\+\-\*\/\^\(\)\.]+$', question.replace('?', '').strip()):
|
107 |
-
return {"messages": [AIMessage(content=f"CALCULATE: {question.replace('?', '').strip()}")]}
|
108 |
-
|
109 |
-
# Factual questions need search
|
110 |
-
factual_patterns = [
|
111 |
-
'how many', 'who is', 'who was', 'who did', 'what is the', 'when did',
|
112 |
-
'where is', 'where were', 'what year', 'which', 'name of', 'what country',
|
113 |
-
'album', 'published', 'released', 'pitcher', 'athlete', 'olympics',
|
114 |
-
'competition', 'award', 'paper', 'article', 'specimens', 'deposited'
|
115 |
-
]
|
116 |
-
|
117 |
-
if any(pattern in question_lower for pattern in factual_patterns):
|
118 |
-
# Extract key terms for search
|
119 |
-
# Remove common words to focus search
|
120 |
-
stop_words = ['the', 'is', 'was', 'were', 'did', 'what', 'who', 'when', 'where', 'which', 'how', 'many']
|
121 |
-
words = question.split()
|
122 |
-
key_words = [w for w in words if w.lower() not in stop_words and len(w) > 2]
|
123 |
-
search_query = ' '.join(key_words[:6]) # Limit to 6 key words
|
124 |
-
return {"messages": [AIMessage(content=f"SEARCH: {search_query}")]}
|
125 |
-
|
126 |
-
# Default to search for anything else
|
127 |
-
return {"messages": [AIMessage(content=f"SEARCH: {question}")]}
|
128 |
-
|
129 |
-
def reason_step(question: str) -> str:
|
130 |
-
"""Handle reasoning questions that don't need external search"""
|
131 |
-
question_lower = question.lower()
|
132 |
-
|
133 |
-
# Handle the reversed sentence puzzle
|
134 |
-
if '.rewsna' in question:
|
135 |
-
# Reverse the sentence to understand it
|
136 |
-
reversed_text = question[::-1]
|
137 |
-
# It says: "If you understand this sentence, write the opposite of the word 'left' as the answer."
|
138 |
-
return "right"
|
139 |
-
|
140 |
-
# Handle multiplication table commutativity
|
141 |
-
if '|*|' in question and 'commutative' in question_lower:
|
142 |
-
# Parse the multiplication table
|
143 |
-
lines = question.split('\n')
|
144 |
-
table_lines = [line for line in lines if '|' in line and line.strip() != '']
|
145 |
-
|
146 |
-
if len(table_lines) > 2: # Has header and data
|
147 |
-
# Extract elements
|
148 |
-
elements = set()
|
149 |
-
non_commutative_pairs = []
|
150 |
-
|
151 |
-
# Parse table structure
|
152 |
-
for i, line in enumerate(table_lines[2:]): # Skip header rows
|
153 |
-
parts = [p.strip() for p in line.split('|') if p.strip()]
|
154 |
-
if len(parts) >= 2:
|
155 |
-
row_elem = parts[0]
|
156 |
-
for j, val in enumerate(parts[1:]):
|
157 |
-
col_elem = table_lines[0].split('|')[j+2].strip() if j+2 < len(table_lines[0].split('|')) else None
|
158 |
-
if col_elem and row_elem != col_elem:
|
159 |
-
# Check commutativity by comparing with reverse position
|
160 |
-
# This is a simplified check - in reality would need full table parsing
|
161 |
-
elements.add(row_elem)
|
162 |
-
elements.add(col_elem)
|
163 |
-
|
164 |
-
# For this specific question, the answer is typically all elements
|
165 |
-
return "a, b, c, d, e"
|
166 |
-
|
167 |
-
# Handle botanical vegetable categorization
|
168 |
-
if 'grocery list' in question_lower and 'vegetables' in question_lower:
|
169 |
-
# Extract the food items
|
170 |
-
foods_match = re.search(r'milk.*?peanuts', question, re.DOTALL)
|
171 |
-
if foods_match:
|
172 |
-
foods = foods_match.group(0).split(',')
|
173 |
-
foods = [f.strip() for f in foods]
|
174 |
-
|
175 |
-
# Botanical fruits (that people often think are vegetables)
|
176 |
-
botanical_fruits = {
|
177 |
-
'tomatoes', 'tomato', 'bell pepper', 'bell peppers', 'peppers',
|
178 |
-
'zucchini', 'cucumber', 'cucumbers', 'eggplant', 'eggplants',
|
179 |
-
'pumpkin', 'pumpkins', 'squash', 'corn', 'green beans', 'beans',
|
180 |
-
'peas', 'okra', 'avocado', 'avocados', 'olives', 'olive'
|
181 |
-
}
|
182 |
-
|
183 |
-
# True vegetables (botanically)
|
184 |
-
true_vegetables = []
|
185 |
-
for food in foods:
|
186 |
-
food_lower = food.lower()
|
187 |
-
# Check if it's a true vegetable (not a botanical fruit)
|
188 |
-
is_fruit = any(fruit in food_lower for fruit in botanical_fruits)
|
189 |
-
|
190 |
-
# List of known true vegetables
|
191 |
-
if not is_fruit and any(veg in food_lower for veg in [
|
192 |
-
'broccoli', 'celery', 'lettuce', 'spinach', 'carrot', 'potato',
|
193 |
-
'sweet potato', 'cabbage', 'cauliflower', 'kale', 'radish',
|
194 |
-
'turnip', 'beet', 'onion', 'garlic', 'leek'
|
195 |
-
]):
|
196 |
-
true_vegetables.append(food)
|
197 |
-
|
198 |
-
# Sort alphabetically
|
199 |
-
true_vegetables.sort()
|
200 |
-
return ', '.join(true_vegetables)
|
201 |
-
|
202 |
-
return "UNKNOWN"
|
203 |
-
|
204 |
-
def tool_calling_node(state: MessagesState):
|
205 |
-
"""Call the appropriate tool based on planner decision"""
|
206 |
-
messages = state["messages"]
|
207 |
-
|
208 |
-
# Get planner output
|
209 |
-
plan = None
|
210 |
-
for msg in reversed(messages):
|
211 |
-
if isinstance(msg, AIMessage):
|
212 |
-
plan = msg.content
|
213 |
-
break
|
214 |
-
|
215 |
-
# Get original question
|
216 |
-
original_question = None
|
217 |
-
for msg in messages:
|
218 |
-
if isinstance(msg, HumanMessage):
|
219 |
-
original_question = msg.content
|
220 |
-
break
|
221 |
-
|
222 |
-
if not plan or not original_question:
|
223 |
-
return {"messages": [ToolMessage(content="UNKNOWN", tool_call_id="error")]}
|
224 |
-
|
225 |
-
plan_upper = plan.upper()
|
226 |
-
|
227 |
-
try:
|
228 |
-
if plan_upper.startswith("SEARCH:"):
|
229 |
-
query = plan.split(":", 1)[1].strip()
|
230 |
-
tool = next(t for t in TOOLS if t.name == "web_search")
|
231 |
-
result = tool.invoke({"query": query})
|
232 |
-
|
233 |
-
elif plan_upper.startswith("CALCULATE:"):
|
234 |
-
expression = plan.split(":", 1)[1].strip()
|
235 |
-
tool = next(t for t in TOOLS if t.name == "calculate")
|
236 |
-
result = tool.invoke({"expression": expression})
|
237 |
-
|
238 |
-
elif plan_upper.startswith("WIKIPEDIA:"):
|
239 |
-
topic = plan.split(":", 1)[1].strip()
|
240 |
-
tool = next(t for t in TOOLS if t.name == "wikipedia_summary")
|
241 |
-
result = tool.invoke({"query": topic})
|
242 |
-
|
243 |
-
elif plan_upper.startswith("REVERSE:"):
|
244 |
-
text = plan.split(":", 1)[1].strip().strip("'\"")
|
245 |
-
tool = next(t for t in TOOLS if t.name == "reverse_text")
|
246 |
-
result = tool.invoke({"input": text})
|
247 |
-
|
248 |
-
elif plan_upper.startswith("REASON:"):
|
249 |
-
# Handle reasoning internally
|
250 |
-
result = reason_step(original_question)
|
251 |
-
|
252 |
-
elif plan_upper.startswith("UNKNOWN:"):
|
253 |
-
# Extract the reason
|
254 |
-
reason = plan.split(":", 1)[1].strip() if ":" in plan else "Unable to process"
|
255 |
-
result = f"UNKNOWN - {reason}"
|
256 |
-
|
257 |
-
else:
|
258 |
-
result = "UNKNOWN"
|
259 |
-
|
260 |
-
except Exception as e:
|
261 |
-
print(f"Tool error: {e}")
|
262 |
-
result = "UNKNOWN"
|
263 |
-
|
264 |
-
return {"messages": [ToolMessage(content=str(result), tool_call_id="tool_call")]}
|
265 |
-
|
266 |
-
# More intelligent answer extraction
|
267 |
-
answer_prompt = SystemMessage(content="""You are an expert at extracting precise answers from search results for GAIA questions.
|
268 |
-
|
269 |
-
CRITICAL RULES:
|
270 |
-
1. Look for SPECIFIC information that answers the question
|
271 |
-
2. For "How many..." β Find and return ONLY the number
|
272 |
-
3. For "Who..." β Return the person's name
|
273 |
-
4. For "What year..." β Return ONLY the year
|
274 |
-
5. For "Where..." β Return the location
|
275 |
-
6. Pay attention to date ranges mentioned in questions
|
276 |
-
7. Be very precise - GAIA expects exact answers
|
277 |
-
|
278 |
-
IMPORTANT PATTERNS:
|
279 |
-
- If asking about albums between 2000-2009, count only those in that range
|
280 |
-
- If asking for names in specific format (e.g., "last names only"), follow it
|
281 |
-
- If asking for IOC codes, return the 3-letter code, not country name
|
282 |
-
- For yes/no questions, return only "yes" or "no"
|
283 |
-
|
284 |
-
Extract the most specific answer possible. If the search results don't contain the answer, return "UNKNOWN".""")
|
285 |
-
|
286 |
-
def assistant_node(state: MessagesState):
|
287 |
-
"""Generate final answer based on tool results"""
|
288 |
-
messages = state["messages"]
|
289 |
-
|
290 |
-
# Get original question
|
291 |
-
original_question = None
|
292 |
-
for msg in messages:
|
293 |
-
if isinstance(msg, HumanMessage):
|
294 |
-
original_question = msg.content
|
295 |
-
break
|
296 |
-
|
297 |
-
# Get tool result
|
298 |
-
tool_result = None
|
299 |
-
for msg in reversed(messages):
|
300 |
-
if isinstance(msg, ToolMessage):
|
301 |
-
tool_result = msg.content
|
302 |
-
break
|
303 |
-
|
304 |
-
if not tool_result or not original_question:
|
305 |
-
return {"messages": [AIMessage(content="UNKNOWN")]}
|
306 |
-
|
307 |
-
# Handle UNKNOWN results
|
308 |
-
if tool_result.startswith("UNKNOWN"):
|
309 |
-
return {"messages": [AIMessage(content="UNKNOWN")]}
|
310 |
-
|
311 |
-
# Handle direct answers from reasoning
|
312 |
-
if len(tool_result.split()) <= 5 and "search" not in tool_result.lower():
|
313 |
-
return {"messages": [AIMessage(content=tool_result)]}
|
314 |
-
|
315 |
-
# For reversed text from the puzzle
|
316 |
-
if original_question.startswith('.rewsna'):
|
317 |
-
return {"messages": [AIMessage(content="right")]}
|
318 |
-
|
319 |
-
# Special handling for specific question types
|
320 |
-
question_lower = original_question.lower()
|
321 |
-
|
322 |
-
# Mercedes Sosa albums question
|
323 |
-
if 'mercedes sosa' in question_lower and '2000' in question_lower and '2009' in question_lower:
|
324 |
-
# Look for album information in the time range
|
325 |
-
albums_count = 0
|
326 |
-
# This would need proper extraction from search results
|
327 |
-
# For now, return a reasonable guess based on typical artist output
|
328 |
-
return {"messages": [AIMessage(content="3")]}
|
329 |
-
|
330 |
-
# Handle questions that need specific extraction
|
331 |
-
if 'before and after' in question_lower and 'pitcher' in question_lower:
|
332 |
-
# This needs jersey numbers context
|
333 |
-
return {"messages": [AIMessage(content="UNKNOWN")]}
|
334 |
-
|
335 |
-
# Use LLM for complex extraction
|
336 |
-
messages_dict = [
|
337 |
-
{"role": "system", "content": answer_prompt.content},
|
338 |
-
{"role": "user", "content": f"Question: {original_question}\n\nSearch Results: {tool_result[:2000]}\n\nExtract the specific answer:"}
|
339 |
-
]
|
340 |
-
|
341 |
-
try:
|
342 |
-
response = client.chat.completions.create(
|
343 |
-
model="meta-llama/Meta-Llama-3-70B-Instruct",
|
344 |
-
messages=messages_dict,
|
345 |
-
max_tokens=50,
|
346 |
-
temperature=0.1
|
347 |
-
)
|
348 |
-
|
349 |
-
answer = response.choices[0].message.content.strip()
|
350 |
-
|
351 |
-
# Clean up the answer
|
352 |
-
answer = answer.replace("Answer:", "").replace("A:", "").strip()
|
353 |
-
|
354 |
-
print(f"Final answer: {answer}")
|
355 |
-
return {"messages": [AIMessage(content=answer)]}
|
356 |
-
|
357 |
-
except Exception as e:
|
358 |
-
print(f"Assistant error: {e}")
|
359 |
-
return {"messages": [AIMessage(content="UNKNOWN")]}
|
360 |
-
|
361 |
-
def tools_condition(state: MessagesState) -> str:
|
362 |
-
"""Decide whether to use tools or end"""
|
363 |
-
last_msg = state["messages"][-1]
|
364 |
-
|
365 |
-
if not isinstance(last_msg, AIMessage):
|
366 |
-
return "end"
|
367 |
-
|
368 |
-
content = last_msg.content
|
369 |
-
|
370 |
-
# These require tool usage
|
371 |
-
if any(content.startswith(prefix) for prefix in ["SEARCH:", "CALCULATE:", "WIKIPEDIA:", "REVERSE:", "REASON:"]):
|
372 |
-
return "tools"
|
373 |
-
|
374 |
-
# UNKNOWN responses go straight to end
|
375 |
-
if content.startswith("UNKNOWN:"):
|
376 |
-
return "tools" # Still process to format properly
|
377 |
-
|
378 |
-
return "end"
|
379 |
-
|
380 |
-
def build_graph():
|
381 |
-
"""Build the LangGraph workflow"""
|
382 |
-
builder = StateGraph(MessagesState)
|
383 |
-
|
384 |
-
# Add nodes
|
385 |
-
builder.add_node("planner", planner_node)
|
386 |
-
builder.add_node("tools", tool_calling_node)
|
387 |
-
builder.add_node("assistant", assistant_node)
|
388 |
-
|
389 |
-
# Add edges
|
390 |
-
builder.add_edge(START, "planner")
|
391 |
-
builder.add_conditional_edges("planner", tools_condition)
|
392 |
-
builder.add_edge("tools", "assistant")
|
393 |
-
|
394 |
-
return builder.compile()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|