Spaces:
Runtime error
Runtime error
Update backend.py
Browse files- backend.py +7 -4
backend.py
CHANGED
@@ -6,7 +6,8 @@ from typing import List, Dict
|
|
6 |
from langchain.prompts import PromptTemplate
|
7 |
from langchain_google_genai import GoogleGenerativeAI
|
8 |
|
9 |
-
|
|
|
10 |
|
11 |
|
12 |
class InvoicePipeline:
|
@@ -18,14 +19,14 @@ class InvoicePipeline:
|
|
18 |
# This funcition will help in extracting and run the code, and will produce a dataframe for us
|
19 |
def run(self) -> pd.DataFrame:
|
20 |
# We have defined the way the data has to be returned
|
21 |
-
df = pd.DataFrame(
|
22 |
"Invoice ID": pd.Series(dtype = "int"),
|
23 |
"DESCRIPTION": pd.Series(dtype = "str"),
|
24 |
"Issue Data": pd.Series(dtype = "str"),
|
25 |
"UNIT PRICE": pd.Series(dtype = "str"),
|
26 |
"AMOUNT": pd.Series(dtype = "int"),
|
27 |
"Bill For": pd.Series(dtype = "str"),
|
28 |
-
"From": pd.Series(dtype ="
|
29 |
"Terms": pd.Series(dtype = "str")}
|
30 |
)
|
31 |
|
@@ -57,4 +58,6 @@ class InvoicePipeline:
|
|
57 |
|
58 |
def _extract_data_from_llm(self, raw_data:str) -> str:
|
59 |
resp = self._llm(self._prompt_template.format(pages = raw_data))
|
60 |
-
return resp
|
|
|
|
|
|
6 |
from langchain.prompts import PromptTemplate
|
7 |
from langchain_google_genai import GoogleGenerativeAI
|
8 |
|
9 |
+
|
10 |
+
api_key = "AIzaSyCYGj5e2eAQbUi9HtuMaW0LDSnDuxLG54U"
|
11 |
|
12 |
|
13 |
class InvoicePipeline:
|
|
|
19 |
# This funcition will help in extracting and run the code, and will produce a dataframe for us
|
20 |
def run(self) -> pd.DataFrame:
|
21 |
# We have defined the way the data has to be returned
|
22 |
+
df = pd.DataFrame({
|
23 |
"Invoice ID": pd.Series(dtype = "int"),
|
24 |
"DESCRIPTION": pd.Series(dtype = "str"),
|
25 |
"Issue Data": pd.Series(dtype = "str"),
|
26 |
"UNIT PRICE": pd.Series(dtype = "str"),
|
27 |
"AMOUNT": pd.Series(dtype = "int"),
|
28 |
"Bill For": pd.Series(dtype = "str"),
|
29 |
+
"From": pd.Series(dtype ="str"),
|
30 |
"Terms": pd.Series(dtype = "str")}
|
31 |
)
|
32 |
|
|
|
58 |
|
59 |
def _extract_data_from_llm(self, raw_data:str) -> str:
|
60 |
resp = self._llm(self._prompt_template.format(pages = raw_data))
|
61 |
+
return resp
|
62 |
+
|
63 |
+
|