File size: 5,072 Bytes
a630adb
d94bdb4
 
 
369f31d
d94bdb4
369f31d
d94bdb4
1b3009e
 
 
 
 
369f31d
d94bdb4
1b3009e
d94bdb4
1b3009e
 
d94bdb4
369f31d
1b3009e
d94bdb4
 
1b3009e
369f31d
 
 
1b3009e
369f31d
 
 
d94bdb4
1b3009e
 
 
 
d94bdb4
1b3009e
 
 
 
 
 
 
 
 
 
d94bdb4
1b3009e
369f31d
 
1b3009e
369f31d
 
d94bdb4
1b3009e
 
 
 
a630adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""
import os
import keyfile
import warnings
import streamlit as st
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.schema import HumanMessage, SystemMessage, AIMessage

# Ignore warnings
warnings.filterwarnings("ignore")

# Streamlit settings
st.set_page_config(page_title="Magical Healer")
st.header("Welcome, What help do you need?")

# Initialize session state for messages
if "sessionMessages" not in st.session_state:
    st.session_state["sessionMessages"] = [
        SystemMessage(content="You are a medieval magical healer known for your peculiar sarcasm")
    ]

# Set Google API key
os.environ["GOOGLE_API_KEY"] = keyfile.GOOGLEKEY

# Initialize the model
llm = ChatGoogleGenerativeAI(
    model="gemini-1.5-pro",
    temperature=0.7,
    convert_system_message_to_human=True
)

# Response function
def load_answer(question):
    # Add user question to the message history
    st.session_state.sessionMessages.append(HumanMessage(content=question))
    
    # Get AI's response
    assistant_answer = llm.invoke(st.session_state.sessionMessages)
    
    # Append AI's answer to the session messages
    if isinstance(assistant_answer, AIMessage):
        st.session_state.sessionMessages.append(assistant_answer)
        return assistant_answer.content
    else:
        st.session_state.sessionMessages.append(AIMessage(content=assistant_answer))
        return assistant_answer

# Capture user input
def get_text():
    input_text = st.text_input("You: ", key="input")
    return str(input_text)

# Main implementation
user_input = get_text()
submit = st.button("Generate")

if submit and user_input:
    response = load_answer(user_input)
    st.subheader("Answer:")
    st.write(response)
"""

import os
import keyfile
import warnings
import streamlit as st
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.schema import HumanMessage, SystemMessage, AIMessage
from streamlit_extras.add_vertical_space import add_vertical_space

# Ignore warnings
warnings.filterwarnings("ignore")

# Streamlit settings
st.set_page_config(page_title="🌿 Magical Healer", page_icon="πŸ§™β€β™€οΈ", layout="centered")
st.markdown("<h1 style='text-align: center; color: #4B0082;'>Welcome to the Magical Healer πŸ§™β€β™€οΈπŸŒΏ</h1>", unsafe_allow_html=True)
st.write("### How can I assist with your ailments or worries? πŸ§ͺ✨")

# Add some vertical space
add_vertical_space(2)

# Initialize session state for messages with an introductory message
if "sessionMessages" not in st.session_state:
    st.session_state["sessionMessages"] = [
        SystemMessage(content="You are a medieval magical healer known for your peculiar sarcasm.")
    ]

# Set Google API key
os.environ["GOOGLE_API_KEY"] = keyfile.GOOGLEKEY

# Initialize the model
llm = ChatGoogleGenerativeAI(
    model="gemini-1.5-pro",
    temperature=0.7,
    convert_system_message_to_human=True
)

# Define a function to create chat bubbles
def chat_bubble(message, is_user=True):
    align = 'right' if is_user else 'left'
    color = '#ADD8E6' if is_user else '#E6E6FA'
    border_radius = '25px' if is_user else '25px'
    st.markdown(f"""
    <div style="text-align: {align}; padding: 10px;">
        <span style="display: inline-block; padding: 10px; background-color: {color}; color: black;
                     border-radius: {border_radius}; max-width: 70%;">
            {message}
        </span>
    </div>
    """, unsafe_allow_html=True)

# Response function
def load_answer(question):
    # Add user question to the message history
    st.session_state.sessionMessages.append(HumanMessage(content=question))
    
    # Get AI's response
    assistant_answer = llm.invoke(st.session_state.sessionMessages)
    
    # Append AI's answer to the session messages
    if isinstance(assistant_answer, AIMessage):
        st.session_state.sessionMessages.append(assistant_answer)
        return assistant_answer.content
    else:
        st.session_state.sessionMessages.append(AIMessage(content=assistant_answer))
        return assistant_answer

# Capture user input
def get_text():
    input_text = st.text_input("You: ", key="input", placeholder="Type your question here...")
    return str(input_text)

# Main implementation
user_input = get_text()
submit = st.button("🌟 Get a Magical Answer 🌟")

if submit and user_input:
    # Display the user's question
    chat_bubble(user_input, is_user=True)
    
    # Load the response and display it as a chat bubble
    response = load_answer(user_input)
    chat_bubble(response, is_user=False)

# Background styling and layout enhancements
st.markdown("""
<style>
    .stApp {
        background: linear-gradient(to right, #FFEFBA, #FFFFFF);
        color: #4B0082;
        font-family: Arial, sans-serif;
    }
    input[type="text"] {
        padding: 8px;
        border: 2px solid #4B0082;
        border-radius: 15px;
        outline: none;
    }
    button {
        background-color: #4B0082;
        color: white;
        border-radius: 15px;
    }
</style>
""", unsafe_allow_html=True)