File size: 3,343 Bytes
a630adb 982d6fd 322907f 1fb5170 a630adb 982d6fd a630adb 982d6fd a630adb 982d6fd a630adb 982d6fd a630adb 982d6fd a630adb 982d6fd a630adb 8a55565 a630adb 8a55565 982d6fd a630adb 8a55565 982d6fd a630adb 982d6fd a630adb 982d6fd a630adb 982d6fd a630adb 982d6fd a630adb 982d6fd a630adb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import os
import keyfile
import warnings
import streamlit as st
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.schema import HumanMessage, SystemMessage, AIMessage
# Ignore warnings
warnings.filterwarnings("ignore")
# Streamlit settings
st.set_page_config(page_title="πΏ ArchanaCare π§ββοΈ", page_icon="π§ββοΈ", layout="wide")
# Header
st.markdown("<h1 style='text-align: center; color: #4B0082;'>Welcome to ArchanaCare πΏβ¨</h1>", unsafe_allow_html=True)
st.markdown("<h3 style='color: #003366;'>How can I assist with your ailments or worries today? π§ͺπ«</h3>", unsafe_allow_html=True)
# Initialize session state for messages
if "sessionMessages" not in st.session_state:
st.session_state.sessionMessages = [
SystemMessage(content="You are a medieval magical healer known for your peculiar sarcasm.")
]
# Set Google API key
os.environ["GOOGLE_API_KEY"] = keyfile.GOOGLEKEY
# Initialize the model
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
temperature=0.7,
convert_system_message_to_human=True
)
# Function to create chat bubbles
def chat_bubble(message, is_user=True):
align = 'right' if is_user else 'left'
color = '#E1F5FE' if is_user else '#FFEBEE'
st.markdown(f"""
<div style="text-align: {align}; padding: 10px;">
<span style="display: inline-block; padding: 10px; background-color: {color}; color: black;
border-radius: 15px; max-width: 70%; word-wrap: break-word;">
{message}
</span>
</div>
""", unsafe_allow_html=True)
# Function to load answer from the model
def load_answer(question):
# Add the user question to sessionMessages
st.session_state.sessionMessages.append(HumanMessage(content=question))
assistant_answer = llm.invoke(st.session_state.sessionMessages)
if isinstance(assistant_answer, AIMessage):
st.session_state.sessionMessages.append(assistant_answer)
return assistant_answer.content
else:
st.session_state.sessionMessages.append(AIMessage(content=assistant_answer))
return assistant_answer
# Display the chat history
for message in st.session_state.sessionMessages:
if isinstance(message, HumanMessage):
chat_bubble(message.content, is_user=True)
elif isinstance(message, AIMessage):
chat_bubble(message.content, is_user=False)
# Input area for new prompt
user_input = st.text_input("You: ", key="input", placeholder="Type your question here...")
# Button for submission
if st.button("π Get a Magical Answer π"):
if user_input:
chat_bubble(user_input, is_user=True) # Display user input
response = load_answer(user_input) # Get response
chat_bubble(response, is_user=False) # Display AI response
# Background styling
st.markdown("""
<style>
.stApp {
background: linear-gradient(to right, #FFEFBA, #FFFFFF);
color: #4B0082;
font-family: Arial, sans-serif;
}
input[type="text"] {
padding: 10px;
border: 2px solid #4B0082;
border-radius: 15px;
outline: none;
width: 100%;
}
button {
background-color: #4B0082;
color: white;
border-radius: 15px;
margin-top: 10px;
}
</style>
""", unsafe_allow_html=True)
|