Spaces:
Runtime error
Runtime error
Add application and pretraied model
Browse files- app.py +208 -0
- model/config.json +53 -0
- model/pytorch_model.bin +3 -0
- model/rng_state.pth +3 -0
- model/scheduler.pt +3 -0
- model/trainer_state.json +1196 -0
- model/training_args.bin +3 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
import re
|
| 5 |
+
import textwrap
|
| 6 |
+
|
| 7 |
+
from shapely.geometry.polygon import Polygon
|
| 8 |
+
import aggdraw
|
| 9 |
+
from PIL import Image, ImageDraw, ImageOps, ImageFilter, ImageFont, ImageColor
|
| 10 |
+
|
| 11 |
+
import gradio as gr
|
| 12 |
+
|
| 13 |
+
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
|
| 14 |
+
|
| 15 |
+
finetuned = AutoModelForCausalLM.from_pretrained('model')
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained('gpt2')
|
| 17 |
+
|
| 18 |
+
# Utility functions
|
| 19 |
+
|
| 20 |
+
housegan_labels = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "missing": 5, "closet": 6,
|
| 21 |
+
"balcony": 7, "corridor": 8, "dining_room": 9, "laundry_room": 10}
|
| 22 |
+
|
| 23 |
+
housegan_colors = [[0, 0, 0], [197, 203, 159], [169, 89, 142], [0, 132, 66], [190, 0, 198], [255, 255, 255],
|
| 24 |
+
[6, 53, 17], [2, 54, 192], [132, 151, 246], [197, 203, 159], [6, 53, 17],]
|
| 25 |
+
|
| 26 |
+
regex = re.compile(".*?\((.*?)\)")
|
| 27 |
+
|
| 28 |
+
def draw_polygons(polygons, colors, im_size=(256, 256), b_color="white", fpath=None):
|
| 29 |
+
|
| 30 |
+
image = Image.new("RGB", im_size, color="white")
|
| 31 |
+
draw = aggdraw.Draw(image)
|
| 32 |
+
|
| 33 |
+
for poly, color, in zip(polygons, colors):
|
| 34 |
+
#get initial polygon coordinates
|
| 35 |
+
xy = poly.exterior.xy
|
| 36 |
+
coords = np.dstack((xy[1], xy[0])).flatten()
|
| 37 |
+
# draw it on canvas, with the appropriate colors
|
| 38 |
+
brush = aggdraw.Brush((0, 0, 0), opacity=255)
|
| 39 |
+
draw.polygon(coords, brush)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
#get inner polygon coordinates
|
| 43 |
+
small_poly = poly.buffer(-1, resolution=32, cap_style=2, join_style=2, mitre_limit=5.0)
|
| 44 |
+
if small_poly.geom_type == 'MultiPolygon':
|
| 45 |
+
mycoordslist = [list(x.exterior.coords) for x in small_poly]
|
| 46 |
+
for coord in mycoordslist:
|
| 47 |
+
coords = np.dstack((np.array(coord)[:,1], np.array(coord)[:, 0])).flatten()
|
| 48 |
+
brush2 = aggdraw.Brush((0, 0, 0), opacity=255)
|
| 49 |
+
draw.polygon(coords, brush2)
|
| 50 |
+
elif poly.geom_type == 'Polygon':
|
| 51 |
+
#get inner polygon coordinates
|
| 52 |
+
xy2 = small_poly.exterior.xy
|
| 53 |
+
coords2 = np.dstack((xy2[1], xy2[0])).flatten()
|
| 54 |
+
# draw it on canvas, with the appropriate colors
|
| 55 |
+
brush2 = aggdraw.Brush((color[0], color[1], color[2]), opacity=255)
|
| 56 |
+
draw.polygon(coords2, brush2)
|
| 57 |
+
|
| 58 |
+
image = Image.frombytes("RGB", (256,256), draw.tobytes()).transpose(Image.FLIP_TOP_BOTTOM)
|
| 59 |
+
|
| 60 |
+
if(fpath):
|
| 61 |
+
image.save(fpath, quality=100, subsampling=0)
|
| 62 |
+
|
| 63 |
+
return draw, image
|
| 64 |
+
|
| 65 |
+
def prompt_to_layout(user_prompt, fpath=None):
|
| 66 |
+
|
| 67 |
+
model_prompt = '[User prompt] {} [Layout]'.format(user_prompt)
|
| 68 |
+
input_ids = tokenizer(model_prompt, return_tensors='pt')
|
| 69 |
+
output = finetuned.generate(**input_ids, do_sample=True, top_p=0.94, top_k=100, max_length=300)
|
| 70 |
+
output = tokenizer.batch_decode(output, skip_special_tokens=True)
|
| 71 |
+
output = output[0].split('[Layout]')[1].split(', ')
|
| 72 |
+
spaces = [txt.split(':')[0] for txt in output]
|
| 73 |
+
|
| 74 |
+
coordinates = [txt.split(':')[1] for txt in output]
|
| 75 |
+
coordinates = [re.findall(regex, coord) for coord in coordinates]
|
| 76 |
+
|
| 77 |
+
polygons = []
|
| 78 |
+
for coord in coordinates:
|
| 79 |
+
polygons.append([point.split(',') for point in coord])
|
| 80 |
+
|
| 81 |
+
geom = []
|
| 82 |
+
for poly in polygons:
|
| 83 |
+
geom.append(Polygon(np.array(poly, dtype=int)))
|
| 84 |
+
|
| 85 |
+
colors = [housegan_colors[housegan_labels[space]] for space in spaces]
|
| 86 |
+
|
| 87 |
+
_, im = draw_polygons(geom, colors, fpath=fpath)
|
| 88 |
+
|
| 89 |
+
legend = Image.open(r"C:\\Users\\user\\Desktop\\legend3.png")
|
| 90 |
+
|
| 91 |
+
im = np.array(im)
|
| 92 |
+
im[:40, :] = np.array(legend)
|
| 93 |
+
im = Image.fromarray(im)
|
| 94 |
+
|
| 95 |
+
return im, output
|
| 96 |
+
|
| 97 |
+
def mut_txt2layout(mut_output):
|
| 98 |
+
output = mut_output[0].split('[Layout]')[1].split(', ')
|
| 99 |
+
spaces = [txt.split(':')[0].strip(' ') for txt in output]
|
| 100 |
+
coordinates = [txt.split(':')[1] for txt in output]
|
| 101 |
+
coordinates = [re.findall(regex, coord) for coord in coordinates]
|
| 102 |
+
|
| 103 |
+
polygons = []
|
| 104 |
+
for coord in coordinates:
|
| 105 |
+
polygons.append([point.split(',') for point in coord])
|
| 106 |
+
|
| 107 |
+
geom = []
|
| 108 |
+
for poly in polygons:
|
| 109 |
+
geom.append(Polygon(np.array(poly, dtype=int)))
|
| 110 |
+
|
| 111 |
+
colors = [housegan_colors[housegan_labels[space]] for space in spaces]
|
| 112 |
+
_, im = draw_polygons(geom, colors, fpath=None)
|
| 113 |
+
|
| 114 |
+
legend = Image.open(r"C:\\Users\\user\\Desktop\\legend3.png")
|
| 115 |
+
|
| 116 |
+
im = np.array(im)
|
| 117 |
+
im[:40, :] = np.array(legend)
|
| 118 |
+
im = Image.fromarray(im)
|
| 119 |
+
|
| 120 |
+
return im
|
| 121 |
+
|
| 122 |
+
def prompt_with_mutation(user_prompt, fpath=None):
|
| 123 |
+
|
| 124 |
+
#Create initial layout based on prompt
|
| 125 |
+
im, output = prompt_to_layout(user_prompt)
|
| 126 |
+
|
| 127 |
+
#Create mutated layout based on initial
|
| 128 |
+
cut_off = np.random.randint(1, 3, size=1)[0]
|
| 129 |
+
cut_off = min(cut_off, len(output)-1)
|
| 130 |
+
new_prompt = model_prompt + ', '.join(output[:cut_off]) + ', '
|
| 131 |
+
input_ids = tokenizer(new_prompt, return_tensors='pt')
|
| 132 |
+
mut_output = finetuned.generate(**input_ids, do_sample=True, top_p=0.94, top_k=100, max_length=200)
|
| 133 |
+
mut_output = tokenizer.batch_decode(mut_output, skip_special_tokens=True)
|
| 134 |
+
mut_im = mut_txt2layout(mut_output)
|
| 135 |
+
|
| 136 |
+
combined = merge_images(im, mut_im)
|
| 137 |
+
|
| 138 |
+
return im, mut_im
|
| 139 |
+
|
| 140 |
+
# Gradio App
|
| 141 |
+
|
| 142 |
+
def gen_and_mutate(user_prompt, mutate=False):
|
| 143 |
+
if(mutate):
|
| 144 |
+
im, mut_im = None, None
|
| 145 |
+
while (mut_im is None):
|
| 146 |
+
im, mut_im = prompt_with_mutation(user_prompt)
|
| 147 |
+
else:
|
| 148 |
+
mut_im=Image.open(r"C:\\Users\\user\\Desktop\\empty.png")
|
| 149 |
+
im, _ = prompt_to_layout(user_prompt)
|
| 150 |
+
|
| 151 |
+
return im, mut_im
|
| 152 |
+
|
| 153 |
+
checkbox = gr.inputs.Checkbox(label='Mutate')
|
| 154 |
+
textbox = gr.inputs.Textbox(placeholder='Enter a prompt describing a layout, see below for instructions')
|
| 155 |
+
|
| 156 |
+
generated = gr.outputs.Image(label='Generated Layout')
|
| 157 |
+
mutated = gr.outputs.Image(label='Mutated Layout')
|
| 158 |
+
|
| 159 |
+
iface = gr.Interface(fn=gen_and_mutate, inputs=[textbox, checkbox], outputs=[generated, mutated],
|
| 160 |
+
thumbnail=r"E:\Datasets\MyFloorplans\text2text\thumbnail_gradio.PNG",
|
| 161 |
+
description='Demo of Semantic Generation of Residential Layouts \n',
|
| 162 |
+
article='''<div>
|
| 163 |
+
<p> This app allows users the use of natural language prompts for appartment layout generation, using a variety of semantic information:</p>
|
| 164 |
+
<ul>
|
| 165 |
+
<li> <strong>typology</strong>: "a bedroom with two bedrooms and two bathrooms"</li>
|
| 166 |
+
<li> <strong>enumeration</strong>: "a house with five rooms"</li>
|
| 167 |
+
<li> <strong>adjacency</strong>: "the kitchen is adjacent to a bedroom", "the living room is not adjacent to the bathroom"</li>
|
| 168 |
+
<li> <strong>location</strong>: "a house with a bedroom in the north east side"</li>
|
| 169 |
+
</ul>
|
| 170 |
+
<p>You can also create a mutation of the generated layout by enabling the 'Mutate' option.</p>
|
| 171 |
+
<p> Made by: <a href='https://www.linkedin.com/in/theodorosgalanos/'>Theodoros </a> <a href='https://twitter.com/TheodoreGalanos'> Galanos</a> and <a href='https://twitter.com/tylerlastovich'>Tyler Lastovich</a> </p>
|
| 172 |
+
</div>''')
|
| 173 |
+
|
| 174 |
+
iface.launch()
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
|
model/config.json
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "EleutherAI/gpt-neo-125M",
|
| 3 |
+
"activation_function": "gelu_new",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"GPTNeoForCausalLM"
|
| 6 |
+
],
|
| 7 |
+
"attention_dropout": 0,
|
| 8 |
+
"attention_layers": [
|
| 9 |
+
"global",
|
| 10 |
+
"local",
|
| 11 |
+
"global",
|
| 12 |
+
"local",
|
| 13 |
+
"global",
|
| 14 |
+
"local",
|
| 15 |
+
"global",
|
| 16 |
+
"local",
|
| 17 |
+
"global",
|
| 18 |
+
"local",
|
| 19 |
+
"global",
|
| 20 |
+
"local"
|
| 21 |
+
],
|
| 22 |
+
"attention_types": [
|
| 23 |
+
[
|
| 24 |
+
[
|
| 25 |
+
"global",
|
| 26 |
+
"local"
|
| 27 |
+
],
|
| 28 |
+
6
|
| 29 |
+
]
|
| 30 |
+
],
|
| 31 |
+
"bos_token_id": 50256,
|
| 32 |
+
"embed_dropout": 0,
|
| 33 |
+
"eos_token_id": 50256,
|
| 34 |
+
"gradient_checkpointing": false,
|
| 35 |
+
"hidden_size": 768,
|
| 36 |
+
"initializer_range": 0.02,
|
| 37 |
+
"intermediate_size": null,
|
| 38 |
+
"layer_norm_epsilon": 1e-05,
|
| 39 |
+
"max_position_embeddings": 2048,
|
| 40 |
+
"model_type": "gpt_neo",
|
| 41 |
+
"num_heads": 12,
|
| 42 |
+
"num_layers": 12,
|
| 43 |
+
"resid_dropout": 0,
|
| 44 |
+
"summary_activation": null,
|
| 45 |
+
"summary_first_dropout": 0.1,
|
| 46 |
+
"summary_proj_to_labels": true,
|
| 47 |
+
"summary_type": "cls_index",
|
| 48 |
+
"summary_use_proj": true,
|
| 49 |
+
"transformers_version": "4.8.1",
|
| 50 |
+
"use_cache": true,
|
| 51 |
+
"vocab_size": 50257,
|
| 52 |
+
"window_size": 256
|
| 53 |
+
}
|
model/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df35819ca3ee7d6667b734dcd2a92c2ab539a72b399f8fb76cdbd89ad8a57df5
|
| 3 |
+
size 526021937
|
model/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a6081874f960bdd9087fced5865fc0df1593c2ffcde9c679c276725789565994
|
| 3 |
+
size 15691
|
model/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d4175248537ab98940ac983894a7f290b125e0bdf7b03a2c00c7c4855d080b5f
|
| 3 |
+
size 623
|
model/trainer_state.json
ADDED
|
@@ -0,0 +1,1196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 2.0,
|
| 5 |
+
"global_step": 97022,
|
| 6 |
+
"is_hyper_param_search": false,
|
| 7 |
+
"is_local_process_zero": true,
|
| 8 |
+
"is_world_process_zero": true,
|
| 9 |
+
"log_history": [
|
| 10 |
+
{
|
| 11 |
+
"epoch": 0.01,
|
| 12 |
+
"learning_rate": 1.25e-06,
|
| 13 |
+
"loss": 0.3381,
|
| 14 |
+
"step": 500
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"epoch": 0.02,
|
| 18 |
+
"learning_rate": 2.5e-06,
|
| 19 |
+
"loss": 0.1717,
|
| 20 |
+
"step": 1000
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"epoch": 0.03,
|
| 24 |
+
"learning_rate": 3.7500000000000005e-06,
|
| 25 |
+
"loss": 0.1167,
|
| 26 |
+
"step": 1500
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"epoch": 0.04,
|
| 30 |
+
"learning_rate": 5e-06,
|
| 31 |
+
"loss": 0.0962,
|
| 32 |
+
"step": 2000
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"epoch": 0.05,
|
| 36 |
+
"learning_rate": 4.9896073662987675e-06,
|
| 37 |
+
"loss": 0.0848,
|
| 38 |
+
"step": 2500
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.06,
|
| 42 |
+
"learning_rate": 4.979214732597535e-06,
|
| 43 |
+
"loss": 0.0796,
|
| 44 |
+
"step": 3000
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.07,
|
| 48 |
+
"learning_rate": 4.968822098896302e-06,
|
| 49 |
+
"loss": 0.0758,
|
| 50 |
+
"step": 3500
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"epoch": 0.08,
|
| 54 |
+
"learning_rate": 4.95842946519507e-06,
|
| 55 |
+
"loss": 0.0732,
|
| 56 |
+
"step": 4000
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"epoch": 0.09,
|
| 60 |
+
"learning_rate": 4.948036831493837e-06,
|
| 61 |
+
"loss": 0.071,
|
| 62 |
+
"step": 4500
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"epoch": 0.1,
|
| 66 |
+
"learning_rate": 4.937644197792605e-06,
|
| 67 |
+
"loss": 0.0697,
|
| 68 |
+
"step": 5000
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"epoch": 0.11,
|
| 72 |
+
"learning_rate": 4.927251564091372e-06,
|
| 73 |
+
"loss": 0.0681,
|
| 74 |
+
"step": 5500
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"epoch": 0.12,
|
| 78 |
+
"learning_rate": 4.91685893039014e-06,
|
| 79 |
+
"loss": 0.0678,
|
| 80 |
+
"step": 6000
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.13,
|
| 84 |
+
"learning_rate": 4.906466296688907e-06,
|
| 85 |
+
"loss": 0.0656,
|
| 86 |
+
"step": 6500
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.14,
|
| 90 |
+
"learning_rate": 4.896073662987675e-06,
|
| 91 |
+
"loss": 0.0651,
|
| 92 |
+
"step": 7000
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"epoch": 0.15,
|
| 96 |
+
"learning_rate": 4.885681029286442e-06,
|
| 97 |
+
"loss": 0.0644,
|
| 98 |
+
"step": 7500
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"epoch": 0.16,
|
| 102 |
+
"learning_rate": 4.87528839558521e-06,
|
| 103 |
+
"loss": 0.0638,
|
| 104 |
+
"step": 8000
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"epoch": 0.18,
|
| 108 |
+
"learning_rate": 4.864895761883977e-06,
|
| 109 |
+
"loss": 0.0627,
|
| 110 |
+
"step": 8500
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"epoch": 0.19,
|
| 114 |
+
"learning_rate": 4.854503128182744e-06,
|
| 115 |
+
"loss": 0.0622,
|
| 116 |
+
"step": 9000
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"epoch": 0.2,
|
| 120 |
+
"learning_rate": 4.844110494481512e-06,
|
| 121 |
+
"loss": 0.0615,
|
| 122 |
+
"step": 9500
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.21,
|
| 126 |
+
"learning_rate": 4.833717860780279e-06,
|
| 127 |
+
"loss": 0.061,
|
| 128 |
+
"step": 10000
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.22,
|
| 132 |
+
"learning_rate": 4.823325227079046e-06,
|
| 133 |
+
"loss": 0.0607,
|
| 134 |
+
"step": 10500
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"epoch": 0.23,
|
| 138 |
+
"learning_rate": 4.812932593377814e-06,
|
| 139 |
+
"loss": 0.0603,
|
| 140 |
+
"step": 11000
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"epoch": 0.24,
|
| 144 |
+
"learning_rate": 4.802539959676581e-06,
|
| 145 |
+
"loss": 0.0597,
|
| 146 |
+
"step": 11500
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"epoch": 0.25,
|
| 150 |
+
"learning_rate": 4.792147325975349e-06,
|
| 151 |
+
"loss": 0.0593,
|
| 152 |
+
"step": 12000
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"epoch": 0.26,
|
| 156 |
+
"learning_rate": 4.781754692274117e-06,
|
| 157 |
+
"loss": 0.0588,
|
| 158 |
+
"step": 12500
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"epoch": 0.27,
|
| 162 |
+
"learning_rate": 4.771362058572884e-06,
|
| 163 |
+
"loss": 0.0587,
|
| 164 |
+
"step": 13000
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.28,
|
| 168 |
+
"learning_rate": 4.760969424871652e-06,
|
| 169 |
+
"loss": 0.058,
|
| 170 |
+
"step": 13500
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.29,
|
| 174 |
+
"learning_rate": 4.750576791170419e-06,
|
| 175 |
+
"loss": 0.0578,
|
| 176 |
+
"step": 14000
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"epoch": 0.3,
|
| 180 |
+
"learning_rate": 4.740184157469187e-06,
|
| 181 |
+
"loss": 0.0574,
|
| 182 |
+
"step": 14500
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"epoch": 0.31,
|
| 186 |
+
"learning_rate": 4.729791523767954e-06,
|
| 187 |
+
"loss": 0.0572,
|
| 188 |
+
"step": 15000
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"epoch": 0.32,
|
| 192 |
+
"learning_rate": 4.719398890066721e-06,
|
| 193 |
+
"loss": 0.0566,
|
| 194 |
+
"step": 15500
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"epoch": 0.33,
|
| 198 |
+
"learning_rate": 4.709006256365489e-06,
|
| 199 |
+
"loss": 0.0566,
|
| 200 |
+
"step": 16000
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"epoch": 0.34,
|
| 204 |
+
"learning_rate": 4.698613622664256e-06,
|
| 205 |
+
"loss": 0.0562,
|
| 206 |
+
"step": 16500
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.35,
|
| 210 |
+
"learning_rate": 4.688220988963023e-06,
|
| 211 |
+
"loss": 0.0555,
|
| 212 |
+
"step": 17000
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.36,
|
| 216 |
+
"learning_rate": 4.677828355261791e-06,
|
| 217 |
+
"loss": 0.0554,
|
| 218 |
+
"step": 17500
|
| 219 |
+
},
|
| 220 |
+
{
|
| 221 |
+
"epoch": 0.37,
|
| 222 |
+
"learning_rate": 4.667435721560558e-06,
|
| 223 |
+
"loss": 0.0559,
|
| 224 |
+
"step": 18000
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"epoch": 0.38,
|
| 228 |
+
"learning_rate": 4.657043087859326e-06,
|
| 229 |
+
"loss": 0.0553,
|
| 230 |
+
"step": 18500
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"epoch": 0.39,
|
| 234 |
+
"learning_rate": 4.646650454158093e-06,
|
| 235 |
+
"loss": 0.0548,
|
| 236 |
+
"step": 19000
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"epoch": 0.4,
|
| 240 |
+
"learning_rate": 4.636257820456861e-06,
|
| 241 |
+
"loss": 0.0548,
|
| 242 |
+
"step": 19500
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"epoch": 0.41,
|
| 246 |
+
"learning_rate": 4.6258651867556285e-06,
|
| 247 |
+
"loss": 0.0544,
|
| 248 |
+
"step": 20000
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.42,
|
| 252 |
+
"learning_rate": 4.6154725530543956e-06,
|
| 253 |
+
"loss": 0.0542,
|
| 254 |
+
"step": 20500
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.43,
|
| 258 |
+
"learning_rate": 4.6050799193531635e-06,
|
| 259 |
+
"loss": 0.0542,
|
| 260 |
+
"step": 21000
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"epoch": 0.44,
|
| 264 |
+
"learning_rate": 4.5946872856519305e-06,
|
| 265 |
+
"loss": 0.0539,
|
| 266 |
+
"step": 21500
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"epoch": 0.45,
|
| 270 |
+
"learning_rate": 4.5842946519506976e-06,
|
| 271 |
+
"loss": 0.0538,
|
| 272 |
+
"step": 22000
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"epoch": 0.46,
|
| 276 |
+
"learning_rate": 4.5739020182494655e-06,
|
| 277 |
+
"loss": 0.0535,
|
| 278 |
+
"step": 22500
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"epoch": 0.47,
|
| 282 |
+
"learning_rate": 4.5635093845482325e-06,
|
| 283 |
+
"loss": 0.0534,
|
| 284 |
+
"step": 23000
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"epoch": 0.48,
|
| 288 |
+
"learning_rate": 4.5531167508469996e-06,
|
| 289 |
+
"loss": 0.0535,
|
| 290 |
+
"step": 23500
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.49,
|
| 294 |
+
"learning_rate": 4.5427241171457675e-06,
|
| 295 |
+
"loss": 0.0533,
|
| 296 |
+
"step": 24000
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.51,
|
| 300 |
+
"learning_rate": 4.5323314834445345e-06,
|
| 301 |
+
"loss": 0.053,
|
| 302 |
+
"step": 24500
|
| 303 |
+
},
|
| 304 |
+
{
|
| 305 |
+
"epoch": 0.52,
|
| 306 |
+
"learning_rate": 4.521938849743302e-06,
|
| 307 |
+
"loss": 0.0529,
|
| 308 |
+
"step": 25000
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"epoch": 0.53,
|
| 312 |
+
"learning_rate": 4.5115462160420694e-06,
|
| 313 |
+
"loss": 0.0527,
|
| 314 |
+
"step": 25500
|
| 315 |
+
},
|
| 316 |
+
{
|
| 317 |
+
"epoch": 0.54,
|
| 318 |
+
"learning_rate": 4.501153582340837e-06,
|
| 319 |
+
"loss": 0.0524,
|
| 320 |
+
"step": 26000
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"epoch": 0.55,
|
| 324 |
+
"learning_rate": 4.490760948639604e-06,
|
| 325 |
+
"loss": 0.052,
|
| 326 |
+
"step": 26500
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"epoch": 0.56,
|
| 330 |
+
"learning_rate": 4.480368314938372e-06,
|
| 331 |
+
"loss": 0.0522,
|
| 332 |
+
"step": 27000
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.57,
|
| 336 |
+
"learning_rate": 4.469975681237139e-06,
|
| 337 |
+
"loss": 0.0522,
|
| 338 |
+
"step": 27500
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.58,
|
| 342 |
+
"learning_rate": 4.459583047535907e-06,
|
| 343 |
+
"loss": 0.0519,
|
| 344 |
+
"step": 28000
|
| 345 |
+
},
|
| 346 |
+
{
|
| 347 |
+
"epoch": 0.59,
|
| 348 |
+
"learning_rate": 4.449190413834674e-06,
|
| 349 |
+
"loss": 0.0521,
|
| 350 |
+
"step": 28500
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"epoch": 0.6,
|
| 354 |
+
"learning_rate": 4.438797780133442e-06,
|
| 355 |
+
"loss": 0.0518,
|
| 356 |
+
"step": 29000
|
| 357 |
+
},
|
| 358 |
+
{
|
| 359 |
+
"epoch": 0.61,
|
| 360 |
+
"learning_rate": 4.428405146432209e-06,
|
| 361 |
+
"loss": 0.0515,
|
| 362 |
+
"step": 29500
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"epoch": 0.62,
|
| 366 |
+
"learning_rate": 4.418012512730976e-06,
|
| 367 |
+
"loss": 0.0514,
|
| 368 |
+
"step": 30000
|
| 369 |
+
},
|
| 370 |
+
{
|
| 371 |
+
"epoch": 0.63,
|
| 372 |
+
"learning_rate": 4.407619879029744e-06,
|
| 373 |
+
"loss": 0.0511,
|
| 374 |
+
"step": 30500
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.64,
|
| 378 |
+
"learning_rate": 4.397227245328511e-06,
|
| 379 |
+
"loss": 0.0512,
|
| 380 |
+
"step": 31000
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.65,
|
| 384 |
+
"learning_rate": 4.386834611627279e-06,
|
| 385 |
+
"loss": 0.0509,
|
| 386 |
+
"step": 31500
|
| 387 |
+
},
|
| 388 |
+
{
|
| 389 |
+
"epoch": 0.66,
|
| 390 |
+
"learning_rate": 4.376441977926046e-06,
|
| 391 |
+
"loss": 0.0513,
|
| 392 |
+
"step": 32000
|
| 393 |
+
},
|
| 394 |
+
{
|
| 395 |
+
"epoch": 0.67,
|
| 396 |
+
"learning_rate": 4.366049344224814e-06,
|
| 397 |
+
"loss": 0.0507,
|
| 398 |
+
"step": 32500
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"epoch": 0.68,
|
| 402 |
+
"learning_rate": 4.355656710523581e-06,
|
| 403 |
+
"loss": 0.0506,
|
| 404 |
+
"step": 33000
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"epoch": 0.69,
|
| 408 |
+
"learning_rate": 4.345264076822349e-06,
|
| 409 |
+
"loss": 0.0503,
|
| 410 |
+
"step": 33500
|
| 411 |
+
},
|
| 412 |
+
{
|
| 413 |
+
"epoch": 0.7,
|
| 414 |
+
"learning_rate": 4.334871443121116e-06,
|
| 415 |
+
"loss": 0.0501,
|
| 416 |
+
"step": 34000
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.71,
|
| 420 |
+
"learning_rate": 4.324478809419884e-06,
|
| 421 |
+
"loss": 0.0502,
|
| 422 |
+
"step": 34500
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.72,
|
| 426 |
+
"learning_rate": 4.314086175718651e-06,
|
| 427 |
+
"loss": 0.0505,
|
| 428 |
+
"step": 35000
|
| 429 |
+
},
|
| 430 |
+
{
|
| 431 |
+
"epoch": 0.73,
|
| 432 |
+
"learning_rate": 4.303693542017419e-06,
|
| 433 |
+
"loss": 0.0505,
|
| 434 |
+
"step": 35500
|
| 435 |
+
},
|
| 436 |
+
{
|
| 437 |
+
"epoch": 0.74,
|
| 438 |
+
"learning_rate": 4.293300908316186e-06,
|
| 439 |
+
"loss": 0.0501,
|
| 440 |
+
"step": 36000
|
| 441 |
+
},
|
| 442 |
+
{
|
| 443 |
+
"epoch": 0.75,
|
| 444 |
+
"learning_rate": 4.282908274614953e-06,
|
| 445 |
+
"loss": 0.05,
|
| 446 |
+
"step": 36500
|
| 447 |
+
},
|
| 448 |
+
{
|
| 449 |
+
"epoch": 0.76,
|
| 450 |
+
"learning_rate": 4.272515640913721e-06,
|
| 451 |
+
"loss": 0.05,
|
| 452 |
+
"step": 37000
|
| 453 |
+
},
|
| 454 |
+
{
|
| 455 |
+
"epoch": 0.77,
|
| 456 |
+
"learning_rate": 4.262123007212488e-06,
|
| 457 |
+
"loss": 0.0498,
|
| 458 |
+
"step": 37500
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.78,
|
| 462 |
+
"learning_rate": 4.251730373511256e-06,
|
| 463 |
+
"loss": 0.0498,
|
| 464 |
+
"step": 38000
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.79,
|
| 468 |
+
"learning_rate": 4.241337739810023e-06,
|
| 469 |
+
"loss": 0.0496,
|
| 470 |
+
"step": 38500
|
| 471 |
+
},
|
| 472 |
+
{
|
| 473 |
+
"epoch": 0.8,
|
| 474 |
+
"learning_rate": 4.23094510610879e-06,
|
| 475 |
+
"loss": 0.0496,
|
| 476 |
+
"step": 39000
|
| 477 |
+
},
|
| 478 |
+
{
|
| 479 |
+
"epoch": 0.81,
|
| 480 |
+
"learning_rate": 4.220552472407558e-06,
|
| 481 |
+
"loss": 0.0493,
|
| 482 |
+
"step": 39500
|
| 483 |
+
},
|
| 484 |
+
{
|
| 485 |
+
"epoch": 0.82,
|
| 486 |
+
"learning_rate": 4.210159838706326e-06,
|
| 487 |
+
"loss": 0.0495,
|
| 488 |
+
"step": 40000
|
| 489 |
+
},
|
| 490 |
+
{
|
| 491 |
+
"epoch": 0.83,
|
| 492 |
+
"learning_rate": 4.199767205005093e-06,
|
| 493 |
+
"loss": 0.049,
|
| 494 |
+
"step": 40500
|
| 495 |
+
},
|
| 496 |
+
{
|
| 497 |
+
"epoch": 0.85,
|
| 498 |
+
"learning_rate": 4.189374571303861e-06,
|
| 499 |
+
"loss": 0.0493,
|
| 500 |
+
"step": 41000
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.86,
|
| 504 |
+
"learning_rate": 4.178981937602628e-06,
|
| 505 |
+
"loss": 0.0491,
|
| 506 |
+
"step": 41500
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.87,
|
| 510 |
+
"learning_rate": 4.1685893039013956e-06,
|
| 511 |
+
"loss": 0.0492,
|
| 512 |
+
"step": 42000
|
| 513 |
+
},
|
| 514 |
+
{
|
| 515 |
+
"epoch": 0.88,
|
| 516 |
+
"learning_rate": 4.158196670200163e-06,
|
| 517 |
+
"loss": 0.0492,
|
| 518 |
+
"step": 42500
|
| 519 |
+
},
|
| 520 |
+
{
|
| 521 |
+
"epoch": 0.89,
|
| 522 |
+
"learning_rate": 4.14780403649893e-06,
|
| 523 |
+
"loss": 0.0487,
|
| 524 |
+
"step": 43000
|
| 525 |
+
},
|
| 526 |
+
{
|
| 527 |
+
"epoch": 0.9,
|
| 528 |
+
"learning_rate": 4.1374114027976976e-06,
|
| 529 |
+
"loss": 0.049,
|
| 530 |
+
"step": 43500
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"epoch": 0.91,
|
| 534 |
+
"learning_rate": 4.127018769096465e-06,
|
| 535 |
+
"loss": 0.0487,
|
| 536 |
+
"step": 44000
|
| 537 |
+
},
|
| 538 |
+
{
|
| 539 |
+
"epoch": 0.92,
|
| 540 |
+
"learning_rate": 4.116626135395232e-06,
|
| 541 |
+
"loss": 0.0489,
|
| 542 |
+
"step": 44500
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.93,
|
| 546 |
+
"learning_rate": 4.1062335016939995e-06,
|
| 547 |
+
"loss": 0.0485,
|
| 548 |
+
"step": 45000
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.94,
|
| 552 |
+
"learning_rate": 4.095840867992767e-06,
|
| 553 |
+
"loss": 0.0486,
|
| 554 |
+
"step": 45500
|
| 555 |
+
},
|
| 556 |
+
{
|
| 557 |
+
"epoch": 0.95,
|
| 558 |
+
"learning_rate": 4.0854482342915345e-06,
|
| 559 |
+
"loss": 0.0485,
|
| 560 |
+
"step": 46000
|
| 561 |
+
},
|
| 562 |
+
{
|
| 563 |
+
"epoch": 0.96,
|
| 564 |
+
"learning_rate": 4.0750556005903015e-06,
|
| 565 |
+
"loss": 0.0487,
|
| 566 |
+
"step": 46500
|
| 567 |
+
},
|
| 568 |
+
{
|
| 569 |
+
"epoch": 0.97,
|
| 570 |
+
"learning_rate": 4.0646629668890694e-06,
|
| 571 |
+
"loss": 0.0482,
|
| 572 |
+
"step": 47000
|
| 573 |
+
},
|
| 574 |
+
{
|
| 575 |
+
"epoch": 0.98,
|
| 576 |
+
"learning_rate": 4.054270333187837e-06,
|
| 577 |
+
"loss": 0.0482,
|
| 578 |
+
"step": 47500
|
| 579 |
+
},
|
| 580 |
+
{
|
| 581 |
+
"epoch": 0.99,
|
| 582 |
+
"learning_rate": 4.043877699486604e-06,
|
| 583 |
+
"loss": 0.0481,
|
| 584 |
+
"step": 48000
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 1.0,
|
| 588 |
+
"learning_rate": 4.033485065785372e-06,
|
| 589 |
+
"loss": 0.0481,
|
| 590 |
+
"step": 48500
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 1.0,
|
| 594 |
+
"eval_loss": 0.04874278977513313,
|
| 595 |
+
"eval_runtime": 1479.0093,
|
| 596 |
+
"eval_samples_per_second": 13.382,
|
| 597 |
+
"eval_steps_per_second": 0.836,
|
| 598 |
+
"step": 48511
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"epoch": 1.01,
|
| 602 |
+
"learning_rate": 4.023092432084139e-06,
|
| 603 |
+
"loss": 0.0479,
|
| 604 |
+
"step": 49000
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 1.02,
|
| 608 |
+
"learning_rate": 4.012699798382906e-06,
|
| 609 |
+
"loss": 0.0478,
|
| 610 |
+
"step": 49500
|
| 611 |
+
},
|
| 612 |
+
{
|
| 613 |
+
"epoch": 1.03,
|
| 614 |
+
"learning_rate": 4.002307164681674e-06,
|
| 615 |
+
"loss": 0.048,
|
| 616 |
+
"step": 50000
|
| 617 |
+
},
|
| 618 |
+
{
|
| 619 |
+
"epoch": 1.04,
|
| 620 |
+
"learning_rate": 3.991914530980441e-06,
|
| 621 |
+
"loss": 0.0477,
|
| 622 |
+
"step": 50500
|
| 623 |
+
},
|
| 624 |
+
{
|
| 625 |
+
"epoch": 1.05,
|
| 626 |
+
"learning_rate": 3.981521897279208e-06,
|
| 627 |
+
"loss": 0.0478,
|
| 628 |
+
"step": 51000
|
| 629 |
+
},
|
| 630 |
+
{
|
| 631 |
+
"epoch": 1.06,
|
| 632 |
+
"learning_rate": 3.971129263577976e-06,
|
| 633 |
+
"loss": 0.0476,
|
| 634 |
+
"step": 51500
|
| 635 |
+
},
|
| 636 |
+
{
|
| 637 |
+
"epoch": 1.07,
|
| 638 |
+
"learning_rate": 3.960736629876743e-06,
|
| 639 |
+
"loss": 0.0475,
|
| 640 |
+
"step": 52000
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 1.08,
|
| 644 |
+
"learning_rate": 3.950343996175511e-06,
|
| 645 |
+
"loss": 0.0473,
|
| 646 |
+
"step": 52500
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 1.09,
|
| 650 |
+
"learning_rate": 3.939951362474278e-06,
|
| 651 |
+
"loss": 0.0477,
|
| 652 |
+
"step": 53000
|
| 653 |
+
},
|
| 654 |
+
{
|
| 655 |
+
"epoch": 1.1,
|
| 656 |
+
"learning_rate": 3.929558728773046e-06,
|
| 657 |
+
"loss": 0.0472,
|
| 658 |
+
"step": 53500
|
| 659 |
+
},
|
| 660 |
+
{
|
| 661 |
+
"epoch": 1.11,
|
| 662 |
+
"learning_rate": 3.919166095071813e-06,
|
| 663 |
+
"loss": 0.0471,
|
| 664 |
+
"step": 54000
|
| 665 |
+
},
|
| 666 |
+
{
|
| 667 |
+
"epoch": 1.12,
|
| 668 |
+
"learning_rate": 3.908773461370581e-06,
|
| 669 |
+
"loss": 0.0472,
|
| 670 |
+
"step": 54500
|
| 671 |
+
},
|
| 672 |
+
{
|
| 673 |
+
"epoch": 1.13,
|
| 674 |
+
"learning_rate": 3.898380827669349e-06,
|
| 675 |
+
"loss": 0.0472,
|
| 676 |
+
"step": 55000
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"epoch": 1.14,
|
| 680 |
+
"learning_rate": 3.887988193968116e-06,
|
| 681 |
+
"loss": 0.0471,
|
| 682 |
+
"step": 55500
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 1.15,
|
| 686 |
+
"learning_rate": 3.877595560266883e-06,
|
| 687 |
+
"loss": 0.0472,
|
| 688 |
+
"step": 56000
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"epoch": 1.16,
|
| 692 |
+
"learning_rate": 3.867202926565651e-06,
|
| 693 |
+
"loss": 0.0471,
|
| 694 |
+
"step": 56500
|
| 695 |
+
},
|
| 696 |
+
{
|
| 697 |
+
"epoch": 1.17,
|
| 698 |
+
"learning_rate": 3.856810292864418e-06,
|
| 699 |
+
"loss": 0.047,
|
| 700 |
+
"step": 57000
|
| 701 |
+
},
|
| 702 |
+
{
|
| 703 |
+
"epoch": 1.19,
|
| 704 |
+
"learning_rate": 3.846417659163185e-06,
|
| 705 |
+
"loss": 0.0472,
|
| 706 |
+
"step": 57500
|
| 707 |
+
},
|
| 708 |
+
{
|
| 709 |
+
"epoch": 1.2,
|
| 710 |
+
"learning_rate": 3.836025025461953e-06,
|
| 711 |
+
"loss": 0.0471,
|
| 712 |
+
"step": 58000
|
| 713 |
+
},
|
| 714 |
+
{
|
| 715 |
+
"epoch": 1.21,
|
| 716 |
+
"learning_rate": 3.82563239176072e-06,
|
| 717 |
+
"loss": 0.0468,
|
| 718 |
+
"step": 58500
|
| 719 |
+
},
|
| 720 |
+
{
|
| 721 |
+
"epoch": 1.22,
|
| 722 |
+
"learning_rate": 3.815239758059488e-06,
|
| 723 |
+
"loss": 0.047,
|
| 724 |
+
"step": 59000
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"epoch": 1.23,
|
| 728 |
+
"learning_rate": 3.8048471243582554e-06,
|
| 729 |
+
"loss": 0.0467,
|
| 730 |
+
"step": 59500
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 1.24,
|
| 734 |
+
"learning_rate": 3.7944544906570224e-06,
|
| 735 |
+
"loss": 0.0465,
|
| 736 |
+
"step": 60000
|
| 737 |
+
},
|
| 738 |
+
{
|
| 739 |
+
"epoch": 1.25,
|
| 740 |
+
"learning_rate": 3.7840618569557903e-06,
|
| 741 |
+
"loss": 0.0467,
|
| 742 |
+
"step": 60500
|
| 743 |
+
},
|
| 744 |
+
{
|
| 745 |
+
"epoch": 1.26,
|
| 746 |
+
"learning_rate": 3.7736692232545574e-06,
|
| 747 |
+
"loss": 0.0465,
|
| 748 |
+
"step": 61000
|
| 749 |
+
},
|
| 750 |
+
{
|
| 751 |
+
"epoch": 1.27,
|
| 752 |
+
"learning_rate": 3.763276589553325e-06,
|
| 753 |
+
"loss": 0.0467,
|
| 754 |
+
"step": 61500
|
| 755 |
+
},
|
| 756 |
+
{
|
| 757 |
+
"epoch": 1.28,
|
| 758 |
+
"learning_rate": 3.7528839558520923e-06,
|
| 759 |
+
"loss": 0.0468,
|
| 760 |
+
"step": 62000
|
| 761 |
+
},
|
| 762 |
+
{
|
| 763 |
+
"epoch": 1.29,
|
| 764 |
+
"learning_rate": 3.7424913221508598e-06,
|
| 765 |
+
"loss": 0.0469,
|
| 766 |
+
"step": 62500
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"epoch": 1.3,
|
| 770 |
+
"learning_rate": 3.7320986884496272e-06,
|
| 771 |
+
"loss": 0.0465,
|
| 772 |
+
"step": 63000
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 1.31,
|
| 776 |
+
"learning_rate": 3.7217060547483947e-06,
|
| 777 |
+
"loss": 0.0462,
|
| 778 |
+
"step": 63500
|
| 779 |
+
},
|
| 780 |
+
{
|
| 781 |
+
"epoch": 1.32,
|
| 782 |
+
"learning_rate": 3.7113134210471618e-06,
|
| 783 |
+
"loss": 0.0467,
|
| 784 |
+
"step": 64000
|
| 785 |
+
},
|
| 786 |
+
{
|
| 787 |
+
"epoch": 1.33,
|
| 788 |
+
"learning_rate": 3.7009207873459297e-06,
|
| 789 |
+
"loss": 0.0465,
|
| 790 |
+
"step": 64500
|
| 791 |
+
},
|
| 792 |
+
{
|
| 793 |
+
"epoch": 1.34,
|
| 794 |
+
"learning_rate": 3.6905281536446967e-06,
|
| 795 |
+
"loss": 0.0464,
|
| 796 |
+
"step": 65000
|
| 797 |
+
},
|
| 798 |
+
{
|
| 799 |
+
"epoch": 1.35,
|
| 800 |
+
"learning_rate": 3.6801355199434646e-06,
|
| 801 |
+
"loss": 0.0465,
|
| 802 |
+
"step": 65500
|
| 803 |
+
},
|
| 804 |
+
{
|
| 805 |
+
"epoch": 1.36,
|
| 806 |
+
"learning_rate": 3.6697428862422316e-06,
|
| 807 |
+
"loss": 0.0465,
|
| 808 |
+
"step": 66000
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"epoch": 1.37,
|
| 812 |
+
"learning_rate": 3.659350252540999e-06,
|
| 813 |
+
"loss": 0.0463,
|
| 814 |
+
"step": 66500
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 1.38,
|
| 818 |
+
"learning_rate": 3.648957618839767e-06,
|
| 819 |
+
"loss": 0.0461,
|
| 820 |
+
"step": 67000
|
| 821 |
+
},
|
| 822 |
+
{
|
| 823 |
+
"epoch": 1.39,
|
| 824 |
+
"learning_rate": 3.638564985138534e-06,
|
| 825 |
+
"loss": 0.0461,
|
| 826 |
+
"step": 67500
|
| 827 |
+
},
|
| 828 |
+
{
|
| 829 |
+
"epoch": 1.4,
|
| 830 |
+
"learning_rate": 3.628172351437301e-06,
|
| 831 |
+
"loss": 0.0462,
|
| 832 |
+
"step": 68000
|
| 833 |
+
},
|
| 834 |
+
{
|
| 835 |
+
"epoch": 1.41,
|
| 836 |
+
"learning_rate": 3.617779717736069e-06,
|
| 837 |
+
"loss": 0.0459,
|
| 838 |
+
"step": 68500
|
| 839 |
+
},
|
| 840 |
+
{
|
| 841 |
+
"epoch": 1.42,
|
| 842 |
+
"learning_rate": 3.6073870840348365e-06,
|
| 843 |
+
"loss": 0.0462,
|
| 844 |
+
"step": 69000
|
| 845 |
+
},
|
| 846 |
+
{
|
| 847 |
+
"epoch": 1.43,
|
| 848 |
+
"learning_rate": 3.596994450333604e-06,
|
| 849 |
+
"loss": 0.0459,
|
| 850 |
+
"step": 69500
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 1.44,
|
| 854 |
+
"learning_rate": 3.5866018166323714e-06,
|
| 855 |
+
"loss": 0.0459,
|
| 856 |
+
"step": 70000
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"epoch": 1.45,
|
| 860 |
+
"learning_rate": 3.5762091829311385e-06,
|
| 861 |
+
"loss": 0.0457,
|
| 862 |
+
"step": 70500
|
| 863 |
+
},
|
| 864 |
+
{
|
| 865 |
+
"epoch": 1.46,
|
| 866 |
+
"learning_rate": 3.5658165492299064e-06,
|
| 867 |
+
"loss": 0.0457,
|
| 868 |
+
"step": 71000
|
| 869 |
+
},
|
| 870 |
+
{
|
| 871 |
+
"epoch": 1.47,
|
| 872 |
+
"learning_rate": 3.5554239155286734e-06,
|
| 873 |
+
"loss": 0.0456,
|
| 874 |
+
"step": 71500
|
| 875 |
+
},
|
| 876 |
+
{
|
| 877 |
+
"epoch": 1.48,
|
| 878 |
+
"learning_rate": 3.5450312818274413e-06,
|
| 879 |
+
"loss": 0.0457,
|
| 880 |
+
"step": 72000
|
| 881 |
+
},
|
| 882 |
+
{
|
| 883 |
+
"epoch": 1.49,
|
| 884 |
+
"learning_rate": 3.5346386481262083e-06,
|
| 885 |
+
"loss": 0.0461,
|
| 886 |
+
"step": 72500
|
| 887 |
+
},
|
| 888 |
+
{
|
| 889 |
+
"epoch": 1.5,
|
| 890 |
+
"learning_rate": 3.524246014424976e-06,
|
| 891 |
+
"loss": 0.046,
|
| 892 |
+
"step": 73000
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"epoch": 1.52,
|
| 896 |
+
"learning_rate": 3.5138533807237433e-06,
|
| 897 |
+
"loss": 0.0456,
|
| 898 |
+
"step": 73500
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 1.53,
|
| 902 |
+
"learning_rate": 3.5034607470225108e-06,
|
| 903 |
+
"loss": 0.0456,
|
| 904 |
+
"step": 74000
|
| 905 |
+
},
|
| 906 |
+
{
|
| 907 |
+
"epoch": 1.54,
|
| 908 |
+
"learning_rate": 3.493068113321278e-06,
|
| 909 |
+
"loss": 0.0458,
|
| 910 |
+
"step": 74500
|
| 911 |
+
},
|
| 912 |
+
{
|
| 913 |
+
"epoch": 1.55,
|
| 914 |
+
"learning_rate": 3.4826754796200457e-06,
|
| 915 |
+
"loss": 0.0455,
|
| 916 |
+
"step": 75000
|
| 917 |
+
},
|
| 918 |
+
{
|
| 919 |
+
"epoch": 1.56,
|
| 920 |
+
"learning_rate": 3.4722828459188128e-06,
|
| 921 |
+
"loss": 0.0458,
|
| 922 |
+
"step": 75500
|
| 923 |
+
},
|
| 924 |
+
{
|
| 925 |
+
"epoch": 1.57,
|
| 926 |
+
"learning_rate": 3.4618902122175806e-06,
|
| 927 |
+
"loss": 0.0455,
|
| 928 |
+
"step": 76000
|
| 929 |
+
},
|
| 930 |
+
{
|
| 931 |
+
"epoch": 1.58,
|
| 932 |
+
"learning_rate": 3.451497578516348e-06,
|
| 933 |
+
"loss": 0.0459,
|
| 934 |
+
"step": 76500
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"epoch": 1.59,
|
| 938 |
+
"learning_rate": 3.441104944815115e-06,
|
| 939 |
+
"loss": 0.0455,
|
| 940 |
+
"step": 77000
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"epoch": 1.6,
|
| 944 |
+
"learning_rate": 3.430712311113883e-06,
|
| 945 |
+
"loss": 0.0457,
|
| 946 |
+
"step": 77500
|
| 947 |
+
},
|
| 948 |
+
{
|
| 949 |
+
"epoch": 1.61,
|
| 950 |
+
"learning_rate": 3.42031967741265e-06,
|
| 951 |
+
"loss": 0.0456,
|
| 952 |
+
"step": 78000
|
| 953 |
+
},
|
| 954 |
+
{
|
| 955 |
+
"epoch": 1.62,
|
| 956 |
+
"learning_rate": 3.409927043711417e-06,
|
| 957 |
+
"loss": 0.0453,
|
| 958 |
+
"step": 78500
|
| 959 |
+
},
|
| 960 |
+
{
|
| 961 |
+
"epoch": 1.63,
|
| 962 |
+
"learning_rate": 3.399534410010185e-06,
|
| 963 |
+
"loss": 0.0454,
|
| 964 |
+
"step": 79000
|
| 965 |
+
},
|
| 966 |
+
{
|
| 967 |
+
"epoch": 1.64,
|
| 968 |
+
"learning_rate": 3.3891417763089525e-06,
|
| 969 |
+
"loss": 0.0453,
|
| 970 |
+
"step": 79500
|
| 971 |
+
},
|
| 972 |
+
{
|
| 973 |
+
"epoch": 1.65,
|
| 974 |
+
"learning_rate": 3.37874914260772e-06,
|
| 975 |
+
"loss": 0.0455,
|
| 976 |
+
"step": 80000
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"epoch": 1.66,
|
| 980 |
+
"learning_rate": 3.3683565089064875e-06,
|
| 981 |
+
"loss": 0.0453,
|
| 982 |
+
"step": 80500
|
| 983 |
+
},
|
| 984 |
+
{
|
| 985 |
+
"epoch": 1.67,
|
| 986 |
+
"learning_rate": 3.3579638752052545e-06,
|
| 987 |
+
"loss": 0.0455,
|
| 988 |
+
"step": 81000
|
| 989 |
+
},
|
| 990 |
+
{
|
| 991 |
+
"epoch": 1.68,
|
| 992 |
+
"learning_rate": 3.3475712415040224e-06,
|
| 993 |
+
"loss": 0.0451,
|
| 994 |
+
"step": 81500
|
| 995 |
+
},
|
| 996 |
+
{
|
| 997 |
+
"epoch": 1.69,
|
| 998 |
+
"learning_rate": 3.3371786078027895e-06,
|
| 999 |
+
"loss": 0.0448,
|
| 1000 |
+
"step": 82000
|
| 1001 |
+
},
|
| 1002 |
+
{
|
| 1003 |
+
"epoch": 1.7,
|
| 1004 |
+
"learning_rate": 3.3267859741015574e-06,
|
| 1005 |
+
"loss": 0.0453,
|
| 1006 |
+
"step": 82500
|
| 1007 |
+
},
|
| 1008 |
+
{
|
| 1009 |
+
"epoch": 1.71,
|
| 1010 |
+
"learning_rate": 3.3163933404003244e-06,
|
| 1011 |
+
"loss": 0.045,
|
| 1012 |
+
"step": 83000
|
| 1013 |
+
},
|
| 1014 |
+
{
|
| 1015 |
+
"epoch": 1.72,
|
| 1016 |
+
"learning_rate": 3.306000706699092e-06,
|
| 1017 |
+
"loss": 0.045,
|
| 1018 |
+
"step": 83500
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 1.73,
|
| 1022 |
+
"learning_rate": 3.2956080729978598e-06,
|
| 1023 |
+
"loss": 0.0453,
|
| 1024 |
+
"step": 84000
|
| 1025 |
+
},
|
| 1026 |
+
{
|
| 1027 |
+
"epoch": 1.74,
|
| 1028 |
+
"learning_rate": 3.285215439296627e-06,
|
| 1029 |
+
"loss": 0.045,
|
| 1030 |
+
"step": 84500
|
| 1031 |
+
},
|
| 1032 |
+
{
|
| 1033 |
+
"epoch": 1.75,
|
| 1034 |
+
"learning_rate": 3.274822805595394e-06,
|
| 1035 |
+
"loss": 0.0454,
|
| 1036 |
+
"step": 85000
|
| 1037 |
+
},
|
| 1038 |
+
{
|
| 1039 |
+
"epoch": 1.76,
|
| 1040 |
+
"learning_rate": 3.2644301718941618e-06,
|
| 1041 |
+
"loss": 0.045,
|
| 1042 |
+
"step": 85500
|
| 1043 |
+
},
|
| 1044 |
+
{
|
| 1045 |
+
"epoch": 1.77,
|
| 1046 |
+
"learning_rate": 3.254037538192929e-06,
|
| 1047 |
+
"loss": 0.0449,
|
| 1048 |
+
"step": 86000
|
| 1049 |
+
},
|
| 1050 |
+
{
|
| 1051 |
+
"epoch": 1.78,
|
| 1052 |
+
"learning_rate": 3.2436449044916967e-06,
|
| 1053 |
+
"loss": 0.045,
|
| 1054 |
+
"step": 86500
|
| 1055 |
+
},
|
| 1056 |
+
{
|
| 1057 |
+
"epoch": 1.79,
|
| 1058 |
+
"learning_rate": 3.233252270790464e-06,
|
| 1059 |
+
"loss": 0.0448,
|
| 1060 |
+
"step": 87000
|
| 1061 |
+
},
|
| 1062 |
+
{
|
| 1063 |
+
"epoch": 1.8,
|
| 1064 |
+
"learning_rate": 3.2228596370892312e-06,
|
| 1065 |
+
"loss": 0.0449,
|
| 1066 |
+
"step": 87500
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 1.81,
|
| 1070 |
+
"learning_rate": 3.212467003387999e-06,
|
| 1071 |
+
"loss": 0.0446,
|
| 1072 |
+
"step": 88000
|
| 1073 |
+
},
|
| 1074 |
+
{
|
| 1075 |
+
"epoch": 1.82,
|
| 1076 |
+
"learning_rate": 3.202074369686766e-06,
|
| 1077 |
+
"loss": 0.045,
|
| 1078 |
+
"step": 88500
|
| 1079 |
+
},
|
| 1080 |
+
{
|
| 1081 |
+
"epoch": 1.83,
|
| 1082 |
+
"learning_rate": 3.191681735985534e-06,
|
| 1083 |
+
"loss": 0.0449,
|
| 1084 |
+
"step": 89000
|
| 1085 |
+
},
|
| 1086 |
+
{
|
| 1087 |
+
"epoch": 1.84,
|
| 1088 |
+
"learning_rate": 3.181289102284301e-06,
|
| 1089 |
+
"loss": 0.0446,
|
| 1090 |
+
"step": 89500
|
| 1091 |
+
},
|
| 1092 |
+
{
|
| 1093 |
+
"epoch": 1.86,
|
| 1094 |
+
"learning_rate": 3.1708964685830686e-06,
|
| 1095 |
+
"loss": 0.0445,
|
| 1096 |
+
"step": 90000
|
| 1097 |
+
},
|
| 1098 |
+
{
|
| 1099 |
+
"epoch": 1.87,
|
| 1100 |
+
"learning_rate": 3.160503834881836e-06,
|
| 1101 |
+
"loss": 0.0448,
|
| 1102 |
+
"step": 90500
|
| 1103 |
+
},
|
| 1104 |
+
{
|
| 1105 |
+
"epoch": 1.88,
|
| 1106 |
+
"learning_rate": 3.1501112011806035e-06,
|
| 1107 |
+
"loss": 0.0445,
|
| 1108 |
+
"step": 91000
|
| 1109 |
+
},
|
| 1110 |
+
{
|
| 1111 |
+
"epoch": 1.89,
|
| 1112 |
+
"learning_rate": 3.1397185674793706e-06,
|
| 1113 |
+
"loss": 0.0447,
|
| 1114 |
+
"step": 91500
|
| 1115 |
+
},
|
| 1116 |
+
{
|
| 1117 |
+
"epoch": 1.9,
|
| 1118 |
+
"learning_rate": 3.1293259337781385e-06,
|
| 1119 |
+
"loss": 0.0446,
|
| 1120 |
+
"step": 92000
|
| 1121 |
+
},
|
| 1122 |
+
{
|
| 1123 |
+
"epoch": 1.91,
|
| 1124 |
+
"learning_rate": 3.1189333000769055e-06,
|
| 1125 |
+
"loss": 0.0449,
|
| 1126 |
+
"step": 92500
|
| 1127 |
+
},
|
| 1128 |
+
{
|
| 1129 |
+
"epoch": 1.92,
|
| 1130 |
+
"learning_rate": 3.1085406663756734e-06,
|
| 1131 |
+
"loss": 0.0446,
|
| 1132 |
+
"step": 93000
|
| 1133 |
+
},
|
| 1134 |
+
{
|
| 1135 |
+
"epoch": 1.93,
|
| 1136 |
+
"learning_rate": 3.0981480326744404e-06,
|
| 1137 |
+
"loss": 0.0442,
|
| 1138 |
+
"step": 93500
|
| 1139 |
+
},
|
| 1140 |
+
{
|
| 1141 |
+
"epoch": 1.94,
|
| 1142 |
+
"learning_rate": 3.087755398973208e-06,
|
| 1143 |
+
"loss": 0.0445,
|
| 1144 |
+
"step": 94000
|
| 1145 |
+
},
|
| 1146 |
+
{
|
| 1147 |
+
"epoch": 1.95,
|
| 1148 |
+
"learning_rate": 3.077362765271976e-06,
|
| 1149 |
+
"loss": 0.0444,
|
| 1150 |
+
"step": 94500
|
| 1151 |
+
},
|
| 1152 |
+
{
|
| 1153 |
+
"epoch": 1.96,
|
| 1154 |
+
"learning_rate": 3.066970131570743e-06,
|
| 1155 |
+
"loss": 0.0444,
|
| 1156 |
+
"step": 95000
|
| 1157 |
+
},
|
| 1158 |
+
{
|
| 1159 |
+
"epoch": 1.97,
|
| 1160 |
+
"learning_rate": 3.05657749786951e-06,
|
| 1161 |
+
"loss": 0.0444,
|
| 1162 |
+
"step": 95500
|
| 1163 |
+
},
|
| 1164 |
+
{
|
| 1165 |
+
"epoch": 1.98,
|
| 1166 |
+
"learning_rate": 3.046184864168278e-06,
|
| 1167 |
+
"loss": 0.0444,
|
| 1168 |
+
"step": 96000
|
| 1169 |
+
},
|
| 1170 |
+
{
|
| 1171 |
+
"epoch": 1.99,
|
| 1172 |
+
"learning_rate": 3.0357922304670453e-06,
|
| 1173 |
+
"loss": 0.0446,
|
| 1174 |
+
"step": 96500
|
| 1175 |
+
},
|
| 1176 |
+
{
|
| 1177 |
+
"epoch": 2.0,
|
| 1178 |
+
"learning_rate": 3.0253995967658127e-06,
|
| 1179 |
+
"loss": 0.0443,
|
| 1180 |
+
"step": 97000
|
| 1181 |
+
},
|
| 1182 |
+
{
|
| 1183 |
+
"epoch": 2.0,
|
| 1184 |
+
"eval_loss": 0.04501689225435257,
|
| 1185 |
+
"eval_runtime": 1478.7113,
|
| 1186 |
+
"eval_samples_per_second": 13.385,
|
| 1187 |
+
"eval_steps_per_second": 0.837,
|
| 1188 |
+
"step": 97022
|
| 1189 |
+
}
|
| 1190 |
+
],
|
| 1191 |
+
"max_steps": 242555,
|
| 1192 |
+
"num_train_epochs": 5,
|
| 1193 |
+
"total_flos": 1.1940942833642373e+18,
|
| 1194 |
+
"trial_name": null,
|
| 1195 |
+
"trial_params": null
|
| 1196 |
+
}
|
model/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:51ee1474c90d834df17eec7e46d87cc82f364065cbe182dd8829d6f16c838280
|
| 3 |
+
size 2735
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy>=1.16.4
|
| 2 |
+
textwrap3==0.9.2
|
| 3 |
+
Pillow==8.0.1
|
| 4 |
+
transformers==4.8.0
|
| 5 |
+
gradio>=2.0.7
|
| 6 |
+
shapely==1.7.1
|
| 7 |
+
aggdraw==1.3.12
|
| 8 |
+
torch==1.7.1
|