Spaces:
Sleeping
Sleeping
File size: 9,770 Bytes
fb645d0 9744341 fb645d0 9744341 0ca9ccb fb645d0 0ca9ccb fb645d0 0ca9ccb 4556388 0ca9ccb 4556388 0ca9ccb 4556388 0ca9ccb 4ff6ab7 0ca9ccb 4ff6ab7 0ca9ccb 4ff6ab7 0ca9ccb 4556388 0ca9ccb 4556388 9744341 fb645d0 4556388 fb645d0 9744341 0ca9ccb fb645d0 0ca9ccb 9744341 fb645d0 9744341 fb645d0 4ff6ab7 9744341 4ff6ab7 fb645d0 0ca9ccb fb645d0 4ff6ab7 fb645d0 4ff6ab7 fb645d0 0ca9ccb 9744341 083d498 0ca9ccb 4ff6ab7 0ca9ccb 4ff6ab7 fb645d0 9744341 fb645d0 9744341 fb645d0 9744341 fb645d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import os
import zipfile
import shutil
import time
from PIL import Image
import io
from rembg import remove
import gradio as gr
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
from transformers import pipeline
def resize_and_crop_image(image_path, target_size=(1080, 1080), crop_mode='center'):
with Image.open(image_path) as img:
width, height = img.size
# Calculate the scaling factor
scaling_factor = max(target_size[0] / width, target_size[1] / height)
# Resize the image with high-quality resampling
new_size = (int(width * scaling_factor), int(height * scaling_factor))
resized_img = img.resize(new_size, Image.LANCZOS)
if crop_mode == 'center':
left = (resized_img.width - target_size[0]) / 2
top = (resized_img.height - target_size[1]) / 2
elif crop_mode == 'top':
left = (resized_img.width - target_size[0]) / 2
top = 0
elif crop_mode == 'bottom':
left = (resized_img.width - target_size[0]) / 2
top = resized_img.height - target_size[1]
elif crop_mode == 'left':
left = 0
top = (resized_img.height - target_size[1]) / 2
elif crop_mode == 'right':
left = resized_img.width - target_size[0]
top = (resized_img.height - target_size[1]) / 2
right = left + target_size[0]
bottom = top + target_size[1]
# Crop the image
cropped_img = resized_img.crop((left, top, right, bottom))
return cropped_img
def remove_background_rembg(input_path):
with open(input_path, 'rb') as i:
input_image = i.read()
output_image = remove(input_image)
img = Image.open(io.BytesIO(output_image)).convert("RGBA")
return img
def remove_background_bria(input_path):
pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True)
pillow_image = pipe(input_path) # applies mask on input and returns a pillow image
return pillow_image
def process_single_image(image_path, output_folder, crop_mode, remove_bg, bg_method, output_format, bg_choice, watermark_path=None):
filename = os.path.basename(image_path)
try:
if remove_bg == 'yes':
if bg_method == 'rembg':
# Remove background using rembg
image_with_no_bg = remove_background_rembg(image_path)
elif bg_method == 'bria':
# Remove background using bria
image_with_no_bg = remove_background_bria(image_path)
temp_image_path = os.path.join(output_folder, f"temp_{filename}")
image_with_no_bg.save(temp_image_path, format='PNG')
else:
temp_image_path = image_path
# Resize and crop the image with or without background removal
new_image = resize_and_crop_image(temp_image_path, crop_mode=crop_mode)
# Save both versions of the image (with and without watermark)
images_paths = []
# Save without watermark
output_ext = 'jpg' if output_format == 'JPG' else 'png'
output_path_without_watermark = os.path.join(output_folder, f"without_watermark_{os.path.splitext(filename)[0]}.{output_ext}")
if output_format == 'JPG':
new_image.convert('RGB').save(output_path_without_watermark, format='JPEG')
else:
new_image.save(output_path_without_watermark, format='PNG')
images_paths.append(output_path_without_watermark)
# Apply watermark if provided and save the version with watermark
if watermark_path:
watermark = Image.open(watermark_path).convert("RGBA")
new_image_with_watermark = new_image.copy()
new_image_with_watermark.paste(watermark, (0, 0), watermark)
output_path_with_watermark = os.path.join(output_folder, f"with_watermark_{os.path.splitext(filename)[0]}.{output_ext}")
if output_format == 'JPG':
new_image_with_watermark.convert('RGB').save(output_path_with_watermark, format='JPEG')
else:
new_image_with_watermark.save(output_path_with_watermark, format='PNG')
images_paths.append(output_path_with_watermark)
if remove_bg == 'yes':
# Remove the temporary file
os.remove(temp_image_path)
return images_paths
except Exception as e:
print(f"Error processing {filename}: {e}")
return None
def process_images(zip_file, crop_mode='center', remove_bg='yes', bg_method='rembg', watermark_path=None, output_format='PNG', bg_choice='transparent', num_workers=4, progress=gr.Progress()):
start_time = time.time()
# Create a temporary directory
input_folder = "temp_input"
output_folder = "temp_output"
if os.path.exists(input_folder):
shutil.rmtree(input_folder)
if os.path.exists(output_folder):
shutil.rmtree(output_folder)
os.makedirs(input_folder)
os.makedirs(output_folder)
# Extract the zip file
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall(input_folder)
processed_images = []
image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif'))]
total_images = len(image_files)
# Process images using ThreadPoolExecutor for I/O-bound tasks and ProcessPoolExecutor for CPU-bound tasks
with ThreadPoolExecutor(max_workers=num_workers) as thread_executor:
with ProcessPoolExecutor(max_workers=num_workers) as process_executor:
future_to_image = {thread_executor.submit(process_single_image, image_path, output_folder, crop_mode, remove_bg, bg_method, output_format, bg_choice, watermark_path): image_path for image_path in image_files}
for idx, future in enumerate(future_to_image):
result = future.result()
if result:
processed_images.extend(result)
# Update progress
progress((idx + 1) / total_images, f"{idx + 1}/{total_images} images processed")
# Create a zip file of the processed images
output_zip_path = "processed_images.zip"
with zipfile.ZipFile(output_zip_path, 'w') as zipf:
for file in processed_images:
if "with_watermark" in file:
zipf.write(file, os.path.join("with_watermark", os.path.basename(file)))
else:
zipf.write(file, os.path.join("without_watermark", os.path.basename(file)))
end_time = time.time()
processing_time = end_time - start_time
# Return the images, the zip file path, and processing time
return processed_images, output_zip_path, processing_time
def gradio_interface(zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers):
progress = gr.Progress() # Initialize progress
watermark_path = watermark.name if watermark else None
return process_images(zip_file.name, crop_mode, remove_bg, bg_method, watermark_path, output_format, bg_choice, num_workers, progress)
def show_bg_choice(remove_bg, output_format):
if remove_bg == 'yes' and output_format == 'PNG':
return gr.update(visible=True)
return gr.update(visible=False)
def show_bg_method(remove_bg):
if remove_bg == 'yes':
return gr.update(visible=True)
return gr.update(visible=False)
# Create the Gradio interface
with gr.Blocks() as iface:
gr.Markdown("# Image Background Removal and Resizing with Optional Watermark")
gr.Markdown("Upload a ZIP or RAR file containing images, choose the crop mode, optionally upload a watermark image, and select the output format.")
with gr.Row():
zip_file = gr.File(label="Upload ZIP/RAR file of images", file_types=[".zip", ".rar"])
watermark = gr.File(label="Upload Watermark Image (Optional)", file_types=[".png"])
with gr.Row():
crop_mode = gr.Radio(choices=["center", "top", "bottom", "left", "right"], label="Crop Mode", value="center")
remove_bg = gr.Radio(choices=["yes", "no"], label="Remove Background", value="yes")
output_format = gr.Radio(choices=["PNG", "JPG"], label="Output Format", value="PNG")
num_workers = gr.Slider(minimum=1, maximum=16, step=1, label="Number of Workers", value=2)
with gr.Row():
bg_method = gr.Radio(choices=["bria", "rembg"], label="Background Removal Method", value="bria", visible=True)
bg_choice = gr.Radio(choices=["transparent", "white"], label="Background Choice", value="transparent", visible=True)
remove_bg.change(show_bg_choice, inputs=[remove_bg, output_format], outputs=bg_choice)
remove_bg.change(show_bg_method, inputs=remove_bg, outputs=bg_method)
output_format.change(show_bg_choice, inputs=[remove_bg, output_format], outputs=bg_choice)
gallery = gr.Gallery(label="Processed Images")
output_zip = gr.File(label="Download Processed Images as ZIP")
processing_time = gr.Textbox(label="Processing Time (seconds)")
def process(zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers):
processed_images, zip_path, time_taken = gradio_interface(zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers)
return processed_images, zip_path, f"{time_taken:.2f} seconds"
process_button = gr.Button("Process Images")
process_button.click(process, inputs=[zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers], outputs=[gallery, output_zip, processing_time])
# Launch the interface
iface.launch()
|