File size: 9,770 Bytes
fb645d0
 
 
9744341
fb645d0
 
 
 
9744341
0ca9ccb
fb645d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ca9ccb
fb645d0
 
 
 
 
 
0ca9ccb
 
 
 
 
 
4556388
 
 
0ca9ccb
 
 
 
 
 
 
4556388
 
 
 
 
 
 
0ca9ccb
 
 
 
 
 
 
 
 
 
 
 
4556388
0ca9ccb
4ff6ab7
 
0ca9ccb
 
 
4ff6ab7
0ca9ccb
4ff6ab7
0ca9ccb
 
4556388
 
 
 
 
0ca9ccb
4556388
 
 
 
 
9744341
 
 
fb645d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4556388
fb645d0
9744341
 
 
 
 
 
 
 
 
 
 
0ca9ccb
fb645d0
 
 
 
0ca9ccb
 
 
 
 
9744341
 
 
 
 
fb645d0
9744341
fb645d0
4ff6ab7
9744341
4ff6ab7
 
 
 
 
fb645d0
0ca9ccb
 
 
 
 
fb645d0
 
4ff6ab7
 
 
fb645d0
 
4ff6ab7
 
 
fb645d0
 
0ca9ccb
9744341
083d498
0ca9ccb
 
 
4ff6ab7
 
 
0ca9ccb
4ff6ab7
fb645d0
 
 
9744341
fb645d0
9744341
 
 
fb645d0
 
9744341
fb645d0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import zipfile
import shutil
import time
from PIL import Image
import io
from rembg import remove
import gradio as gr
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
from transformers import pipeline

def resize_and_crop_image(image_path, target_size=(1080, 1080), crop_mode='center'):
    with Image.open(image_path) as img:
        width, height = img.size

        # Calculate the scaling factor
        scaling_factor = max(target_size[0] / width, target_size[1] / height)

        # Resize the image with high-quality resampling
        new_size = (int(width * scaling_factor), int(height * scaling_factor))
        resized_img = img.resize(new_size, Image.LANCZOS)

        if crop_mode == 'center':
            left = (resized_img.width - target_size[0]) / 2
            top = (resized_img.height - target_size[1]) / 2
        elif crop_mode == 'top':
            left = (resized_img.width - target_size[0]) / 2
            top = 0
        elif crop_mode == 'bottom':
            left = (resized_img.width - target_size[0]) / 2
            top = resized_img.height - target_size[1]
        elif crop_mode == 'left':
            left = 0
            top = (resized_img.height - target_size[1]) / 2
        elif crop_mode == 'right':
            left = resized_img.width - target_size[0]
            top = (resized_img.height - target_size[1]) / 2

        right = left + target_size[0]
        bottom = top + target_size[1]

        # Crop the image
        cropped_img = resized_img.crop((left, top, right, bottom))

        return cropped_img

def remove_background_rembg(input_path):
    with open(input_path, 'rb') as i:
        input_image = i.read()
    output_image = remove(input_image)
    img = Image.open(io.BytesIO(output_image)).convert("RGBA")
    return img

def remove_background_bria(input_path):
    pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True)
    pillow_image = pipe(input_path)  # applies mask on input and returns a pillow image
    return pillow_image

def process_single_image(image_path, output_folder, crop_mode, remove_bg, bg_method, output_format, bg_choice, watermark_path=None):
    filename = os.path.basename(image_path)
    try:
        if remove_bg == 'yes':
            if bg_method == 'rembg':
                # Remove background using rembg
                image_with_no_bg = remove_background_rembg(image_path)
            elif bg_method == 'bria':
                # Remove background using bria
                image_with_no_bg = remove_background_bria(image_path)
                
            temp_image_path = os.path.join(output_folder, f"temp_{filename}")
            image_with_no_bg.save(temp_image_path, format='PNG')
        else:
            temp_image_path = image_path

        # Resize and crop the image with or without background removal
        new_image = resize_and_crop_image(temp_image_path, crop_mode=crop_mode)

        # Save both versions of the image (with and without watermark)
        images_paths = []

        # Save without watermark
        output_ext = 'jpg' if output_format == 'JPG' else 'png'
        output_path_without_watermark = os.path.join(output_folder, f"without_watermark_{os.path.splitext(filename)[0]}.{output_ext}")
        if output_format == 'JPG':
            new_image.convert('RGB').save(output_path_without_watermark, format='JPEG')
        else:
            new_image.save(output_path_without_watermark, format='PNG')
        images_paths.append(output_path_without_watermark)

        # Apply watermark if provided and save the version with watermark
        if watermark_path:
            watermark = Image.open(watermark_path).convert("RGBA")
            new_image_with_watermark = new_image.copy()
            new_image_with_watermark.paste(watermark, (0, 0), watermark)
            output_path_with_watermark = os.path.join(output_folder, f"with_watermark_{os.path.splitext(filename)[0]}.{output_ext}")
            if output_format == 'JPG':
                new_image_with_watermark.convert('RGB').save(output_path_with_watermark, format='JPEG')
            else:
                new_image_with_watermark.save(output_path_with_watermark, format='PNG')
            images_paths.append(output_path_with_watermark)

        if remove_bg == 'yes':
            # Remove the temporary file
            os.remove(temp_image_path)

        return images_paths

    except Exception as e:
        print(f"Error processing {filename}: {e}")
        return None

def process_images(zip_file, crop_mode='center', remove_bg='yes', bg_method='rembg', watermark_path=None, output_format='PNG', bg_choice='transparent', num_workers=4, progress=gr.Progress()):
    start_time = time.time()
    
    # Create a temporary directory
    input_folder = "temp_input"
    output_folder = "temp_output"
    if os.path.exists(input_folder):
        shutil.rmtree(input_folder)
    if os.path.exists(output_folder):
        shutil.rmtree(output_folder)
    os.makedirs(input_folder)
    os.makedirs(output_folder)
    
    # Extract the zip file
    with zipfile.ZipFile(zip_file, 'r') as zip_ref:
        zip_ref.extractall(input_folder)
    
    processed_images = []
    image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif'))]
    total_images = len(image_files)

    # Process images using ThreadPoolExecutor for I/O-bound tasks and ProcessPoolExecutor for CPU-bound tasks
    with ThreadPoolExecutor(max_workers=num_workers) as thread_executor:
        with ProcessPoolExecutor(max_workers=num_workers) as process_executor:
            future_to_image = {thread_executor.submit(process_single_image, image_path, output_folder, crop_mode, remove_bg, bg_method, output_format, bg_choice, watermark_path): image_path for image_path in image_files}
            for idx, future in enumerate(future_to_image):
                result = future.result()
                if result:
                    processed_images.extend(result)
                # Update progress
                progress((idx + 1) / total_images, f"{idx + 1}/{total_images} images processed")

    # Create a zip file of the processed images
    output_zip_path = "processed_images.zip"
    with zipfile.ZipFile(output_zip_path, 'w') as zipf:
        for file in processed_images:
            if "with_watermark" in file:
                zipf.write(file, os.path.join("with_watermark", os.path.basename(file)))
            else:
                zipf.write(file, os.path.join("without_watermark", os.path.basename(file)))

    end_time = time.time()
    processing_time = end_time - start_time
    
    # Return the images, the zip file path, and processing time
    return processed_images, output_zip_path, processing_time

def gradio_interface(zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers):
    progress = gr.Progress()  # Initialize progress
    watermark_path = watermark.name if watermark else None
    return process_images(zip_file.name, crop_mode, remove_bg, bg_method, watermark_path, output_format, bg_choice, num_workers, progress)

def show_bg_choice(remove_bg, output_format):
    if remove_bg == 'yes' and output_format == 'PNG':
        return gr.update(visible=True)
    return gr.update(visible=False)

def show_bg_method(remove_bg):
    if remove_bg == 'yes':
        return gr.update(visible=True)
    return gr.update(visible=False)

# Create the Gradio interface
with gr.Blocks() as iface:
    gr.Markdown("# Image Background Removal and Resizing with Optional Watermark")
    gr.Markdown("Upload a ZIP or RAR file containing images, choose the crop mode, optionally upload a watermark image, and select the output format.")

    with gr.Row():
        zip_file = gr.File(label="Upload ZIP/RAR file of images", file_types=[".zip", ".rar"])
        watermark = gr.File(label="Upload Watermark Image (Optional)", file_types=[".png"])
    
    with gr.Row():
        crop_mode = gr.Radio(choices=["center", "top", "bottom", "left", "right"], label="Crop Mode", value="center")
        remove_bg = gr.Radio(choices=["yes", "no"], label="Remove Background", value="yes")
        
        output_format = gr.Radio(choices=["PNG", "JPG"], label="Output Format", value="PNG")
        num_workers = gr.Slider(minimum=1, maximum=16, step=1, label="Number of Workers", value=2)

    with gr.Row():
        bg_method = gr.Radio(choices=["bria", "rembg"], label="Background Removal Method", value="bria", visible=True)
        bg_choice = gr.Radio(choices=["transparent", "white"], label="Background Choice", value="transparent", visible=True)

    remove_bg.change(show_bg_choice, inputs=[remove_bg, output_format], outputs=bg_choice)
    remove_bg.change(show_bg_method, inputs=remove_bg, outputs=bg_method)
    output_format.change(show_bg_choice, inputs=[remove_bg, output_format], outputs=bg_choice)

    gallery = gr.Gallery(label="Processed Images")
    output_zip = gr.File(label="Download Processed Images as ZIP")
    processing_time = gr.Textbox(label="Processing Time (seconds)")

    def process(zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers):
        processed_images, zip_path, time_taken = gradio_interface(zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers)
        return processed_images, zip_path, f"{time_taken:.2f} seconds"

    process_button = gr.Button("Process Images")
    process_button.click(process, inputs=[zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers], outputs=[gallery, output_zip, processing_time])

# Launch the interface
iface.launch()