Spaces:
Sleeping
Sleeping
File size: 14,366 Bytes
39887c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import os
import zipfile
import shutil
import time
from PIL import Image
import io
from rembg import remove
import gradio as gr
from concurrent.futures import ThreadPoolExecutor
from transformers import pipeline
def colors_within_tolerance(color1, color2, tolerance):
return all(abs(c1 - c2) <= tolerance for c1, c2 in zip(color1, color2))
def check_border_colors(image_path, tolerance):
image = Image.open(image_path)
pixels = image.load()
width, height = image.size
left_border_color = pixels[0, 0]
right_border_color = pixels[width - 1, 0]
for y in range(height):
if not colors_within_tolerance(pixels[0, y], left_border_color, tolerance):
return False
if not colors_within_tolerance(pixels[width - 1, y], right_border_color, tolerance):
return False
return True
def resize_and_crop_image(image_path, target_size=(1080, 1080), crop_mode='center'):
print(f"Resizing and cropping image: {image_path}")
with Image.open(image_path) as img:
width, height = img.size
print(f"Original image size: {width}x{height}")
scaling_factor = max(target_size[0] / width, target_size[1] / height)
new_size = (int(width * scaling_factor), int(height * scaling_factor))
resized_img = img.resize(new_size, Image.LANCZOS)
print(f"Resized image size: {new_size}")
if crop_mode == 'center':
left = (resized_img.width - target_size[0]) / 2
top = (resized_img.height - target_size[1]) / 2
elif crop_mode == 'top':
left = (resized_img.width - target_size[0]) / 2
top = 0
elif crop_mode == 'bottom':
left = (resized_img.width - target_size[0]) / 2
top = resized_img.height - target_size[1]
elif crop_mode == 'left':
left = 0
top = (resized_img.height - target_size[1]) / 2
elif crop_mode == 'right':
left = resized_img.width - target_size[0]
top = (resized_img.height - target_size[1]) / 2
right = left + target_size[0]
bottom = top + target_size[1]
cropped_img = resized_img.crop((left, top, right, bottom))
print(f"Cropped image size: {cropped_img.size}")
return cropped_img
def remove_background_rembg(input_path):
print(f"Removing background using rembg for image: {input_path}")
with open(input_path, 'rb') as i:
input_image = i.read()
output_image = remove(input_image)
img = Image.open(io.BytesIO(output_image)).convert("RGBA")
return img
def remove_background_bria(input_path):
print(f"Removing background using bria for image: {input_path}")
pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True, device=0)
pillow_image = pipe(input_path)
return pillow_image
def process_single_image(image_path, output_folder, crop_mode, bg_method, output_format, bg_choice, custom_color, watermark_path=None):
filename = os.path.basename(image_path)
try:
print(f"Processing image: {filename}")
if bg_method == 'rembg':
image_with_no_bg = remove_background_rembg(image_path)
elif bg_method == 'bria':
image_with_no_bg = remove_background_bria(image_path)
temp_image_path = os.path.join(output_folder, f"temp_{filename}")
image_with_no_bg.save(temp_image_path, format='PNG')
if check_border_colors(temp_image_path, tolerance=50):
print(f"Border colors are the same for image: {filename}")
if bg_choice == 'transparent':
new_image = Image.new("RGBA", (1080, 1080), (255, 255, 255, 0))
else:
new_image = Image.new("RGBA", (1080, 1080), custom_color)
width, height = image_with_no_bg.size
scaling_factor = min(1080 / width, 1080 / height)
new_size = (int(width * scaling_factor), int(height * scaling_factor))
resized_img = image_with_no_bg.resize(new_size, Image.LANCZOS)
print(f"Resized image size: {new_size}")
new_image.paste(resized_img, ((1080 - resized_img.width) // 2, (1080 - resized_img.height) // 2))
else:
print(f"Border colors are different for image: {filename}")
new_image = resize_and_crop_image(temp_image_path, crop_mode=crop_mode)
if bg_choice == 'white':
new_image = new_image.convert("RGBA")
white_bg = Image.new("RGBA", new_image.size, "WHITE")
new_image = Image.alpha_composite(white_bg, new_image)
elif bg_choice == 'custom':
new_image = new_image.convert("RGBA")
custom_bg = Image.new("RGBA", new_image.size, custom_color)
new_image = Image.alpha_composite(custom_bg, new_image)
images_paths = []
output_ext = 'jpg' if output_format == 'JPG' else 'png'
output_path_without_watermark = os.path.join(output_folder, f"without_watermark_{os.path.splitext(filename)[0]}.{output_ext}")
if output_format == 'JPG':
new_image.convert('RGB').save(output_path_without_watermark, format='JPEG')
else:
new_image.save(output_path_without_watermark, format='PNG')
images_paths.append((output_path_without_watermark, image_path))
if watermark_path:
watermark = Image.open(watermark_path).convert("RGBA")
new_image_with_watermark = new_image.copy()
new_image_with_watermark.paste(watermark, (0, 0), watermark)
output_path_with_watermark = os.path.join(output_folder, f"with_watermark_{os.path.splitext(filename)[0]}.{output_ext}")
if output_format == 'JPG':
new_image_with_watermark.convert('RGB').save(output_path_with_watermark, format='JPEG')
else:
new_image_with_watermark.save(output_path_with_watermark, format='PNG')
images_paths.append((output_path_with_watermark, image_path))
os.remove(temp_image_path)
print(f"Processed image paths: {images_paths}")
return images_paths
except Exception as e:
print(f"Error processing {filename}: {e}")
return None
def process_images(input_files, crop_mode='center', bg_method='rembg', watermark_path=None, output_format='PNG', bg_choice='transparent', custom_color="#ffffff", num_workers=4, progress=gr.Progress()):
start_time = time.time()
output_folder = "temp_output"
if os.path.exists(output_folder):
shutil.rmtree(output_folder)
os.makedirs(output_folder)
processed_images = []
original_images = []
if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
input_folder = "temp_input"
if os.path.exists(input_folder):
shutil.rmtree(input_folder)
os.makedirs(input_folder)
try:
with zipfile.ZipFile(input_files, 'r') as zip_ref:
zip_ref.extractall(input_folder)
except zipfile.BadZipFile as e:
print(f"Error extracting zip file: {e}")
return [], None, 0
image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp'))]
else:
image_files = [f.name for f in input_files]
total_images = len(image_files)
print(f"Total images to process: {total_images}")
avg_processing_time = 0
with ThreadPoolExecutor(max_workers=num_workers) as executor:
future_to_image = {executor.submit(process_single_image, image_path, output_folder, crop_mode, bg_method, output_format, bg_choice, custom_color, watermark_path): image_path for image_path in image_files}
for idx, future in enumerate(future_to_image):
try:
start_time_image = time.time()
result = future.result()
end_time_image = time.time()
image_processing_time = end_time_image - start_time_image
# Update average processing time
avg_processing_time = (avg_processing_time * idx + image_processing_time) / (idx + 1)
if result:
processed_images.extend(result)
original_images.append(future_to_image[future])
# Estimate remaining time
remaining_images = total_images - (idx + 1)
estimated_remaining_time = remaining_images * avg_processing_time
progress((idx + 1) / total_images, f"{idx + 1}/{total_images} images processed. Estimated time remaining: {estimated_remaining_time:.2f} seconds")
except Exception as e:
print(f"Error processing image {future_to_image[future]}: {e}")
output_zip_path = "processed_images.zip"
with zipfile.ZipFile(output_zip_path, 'w') as zipf:
for file, _ in processed_images:
if "with_watermark" in file:
zipf.write(file, os.path.join("with_watermark", os.path.basename(file)))
else:
zipf.write(file, os.path.join("without_watermark", os.path.basename(file)))
end_time = time.time()
processing_time = end_time - start_time
print(f"Processing time: {processing_time} seconds")
return original_images, processed_images, output_zip_path, processing_time
def gradio_interface(input_type, input_files, crop_mode, bg_method, watermark, output_format, bg_choice, custom_color, num_workers):
progress = gr.Progress()
watermark_path = watermark.name if watermark else None
if input_type == "zip_rar":
return process_images(input_files.name, crop_mode, bg_method, watermark_path, output_format, bg_choice, custom_color, num_workers, progress)
else:
return process_images(input_files, crop_mode, bg_method, watermark_path, output_format, bg_choice, custom_color, num_workers, progress)
def show_color_picker(bg_choice):
if bg_choice == 'custom':
return gr.update(visible=True)
return gr.update(visible=False)
def update_slider(evt: gr.SelectData):
if isinstance(evt.value, dict) and 'caption' in evt.value:
input_path = evt.value['caption']
output_path = evt.value['image']['path']
input_path = input_path.split("Input: ")[-1]
# Open the original and processed images
original_img = Image.open(input_path)
processed_img = Image.open(output_path)
# Calculate the aspect ratios
original_ratio = f"{original_img.width}x{original_img.height}"
processed_ratio = f"{processed_img.width}x{processed_img.height}"
return gr.update(value=input_path), gr.update(value=output_path), gr.update(value=original_ratio), gr.update(value=processed_ratio)
else:
print("No caption found in selection")
return gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)
def process(input_type, input_files, crop_mode, bg_method, watermark, output_format, bg_choice, custom_color, num_workers):
_, processed_images, zip_path, time_taken = gradio_interface(input_type, input_files, crop_mode, bg_method, watermark, output_format, bg_choice, custom_color, num_workers)
processed_images_with_captions = [(img, f"Input: {caption}") for img, caption in processed_images]
return processed_images_with_captions, zip_path, f"{time_taken:.2f} seconds"
def update_input_type(choice):
if choice == "zip_rar":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
with gr.Blocks() as iface:
gr.Markdown("# Image Background Removal and Resizing with Optional Watermark")
gr.Markdown("Choose to upload multiple images or a ZIP/RAR file, select the crop mode, optionally upload a watermark image, and choose the output format.")
input_type = gr.Radio(choices=["multiple_images", "zip_rar"], label="Input Type", value="multiple_images")
with gr.Row():
zip_file = gr.File(label="Upload ZIP/RAR file of images", file_types=[".zip", ".rar"], visible=False)
multiple_images = gr.File(label="Upload multiple images", file_types=["image"], file_count="multiple")
watermark = gr.File(label="Upload Watermark Image (Optional)", file_types=[".png"])
with gr.Row():
crop_mode = gr.Radio(choices=["center", "top", "bottom", "left", "right"], label="Crop Mode", value="center")
output_format = gr.Radio(choices=["PNG", "JPG"], label="Output Format", value="JPG")
num_workers = gr.Slider(minimum=1, maximum=16, step=1, label="Number of Workers", value=5)
with gr.Row():
bg_method = gr.Radio(choices=["bria", "rembg"], label="Background Removal Method", value="bria")
bg_choice = gr.Radio(choices=["transparent", "white", "custom"], label="Background Choice", value="white")
custom_color = gr.ColorPicker(label="Custom Background Color", value="#ffffff", visible=False)
with gr.Row():
gallery_processed = gr.Gallery(label="Processed Images")
with gr.Row():
image_original = gr.Image(label="Original Images", interactive=False)
image_processed = gr.Image(label="Processed Images", interactive=False)
with gr.Row():
original_ratio = gr.Textbox(label="Original Ratio")
processed_ratio = gr.Textbox(label="Processed Ratio")
with gr.Row():
output_zip = gr.File(label="Download Processed Images as ZIP")
processing_time = gr.Textbox(label="Processing Time (seconds)")
input_type.change(update_input_type, inputs=input_type, outputs=[zip_file, multiple_images])
bg_choice.change(show_color_picker, inputs=bg_choice, outputs=custom_color)
process_button = gr.Button("Process Images")
process_button.click(process, inputs=[input_type, multiple_images, crop_mode, bg_method, watermark, output_format, bg_choice, custom_color, num_workers], outputs=[gallery_processed, output_zip, processing_time])
gallery_processed.select(update_slider, outputs=[image_original, image_processed, original_ratio, processed_ratio])
iface.launch()
|