File size: 5,615 Bytes
fb645d0
 
 
 
 
 
 
4556388
fb645d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4556388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb645d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4556388
fb645d0
 
4556388
 
 
 
 
 
 
fb645d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import zipfile
import shutil
from PIL import Image
import io
from rembg import remove
import gradio as gr
from concurrent.futures import ThreadPoolExecutor

def resize_and_crop_image(image_path, target_size=(1080, 1080), crop_mode='center'):
    with Image.open(image_path) as img:
        width, height = img.size

        # Calculate the scaling factor
        scaling_factor = max(target_size[0] / width, target_size[1] / height)

        # Resize the image with high-quality resampling
        new_size = (int(width * scaling_factor), int(height * scaling_factor))
        resized_img = img.resize(new_size, Image.LANCZOS)

        if crop_mode == 'center':
            left = (resized_img.width - target_size[0]) / 2
            top = (resized_img.height - target_size[1]) / 2
        elif crop_mode == 'top':
            left = (resized_img.width - target_size[0]) / 2
            top = 0
        elif crop_mode == 'bottom':
            left = (resized_img.width - target_size[0]) / 2
            top = resized_img.height - target_size[1]
        elif crop_mode == 'left':
            left = 0
            top = (resized_img.height - target_size[1]) / 2
        elif crop_mode == 'right':
            left = resized_img.width - target_size[0]
            top = (resized_img.height - target_size[1]) / 2

        right = left + target_size[0]
        bottom = top + target_size[1]

        # Crop the image
        cropped_img = resized_img.crop((left, top, right, bottom))

        return cropped_img

def remove_background(input_path):
    with open(input_path, 'rb') as i:
        input_image = i.read()
    output_image = remove(input_image)
    img = Image.open(io.BytesIO(output_image)).convert("RGBA")
    return img

def process_single_image(image_path, output_folder, crop_mode, remove_bg):
    filename = os.path.basename(image_path)
    try:
        if remove_bg == 'yes':
            # Remove background
            image_with_no_bg = remove_background(image_path)
            temp_image_path = os.path.join(output_folder, f"temp_{filename}")
            image_with_no_bg.save(temp_image_path, format='PNG')
        else:
            temp_image_path = image_path

        # Resize and crop the image with or without background removal
        new_image = resize_and_crop_image(temp_image_path, crop_mode=crop_mode)

        # Save the final image
        output_path = os.path.join(output_folder, f"{os.path.splitext(filename)[0]}.png")
        new_image.save(output_path, format='PNG')

        if remove_bg == 'yes':
            # Remove the temporary file
            os.remove(temp_image_path)

        return output_path

    except Exception as e:
        print(f"Error processing {filename}: {e}")
        return None

def process_images(zip_file, crop_mode='center', remove_bg='yes', progress=gr.Progress()):
    # Create a temporary directory
    input_folder = "temp_input"
    output_folder = "temp_output"
    if os.path.exists(input_folder):
        shutil.rmtree(input_folder)
    if os.path.exists(output_folder):
        shutil.rmtree(output_folder)
    os.makedirs(input_folder)
    os.makedirs(output_folder)
    
    # Extract the zip file
    with zipfile.ZipFile(zip_file, 'r') as zip_ref:
        zip_ref.extractall(input_folder)
    
    processed_images = []
    image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif'))]
    total_images = len(image_files)

    # Process images using ThreadPoolExecutor
    with ThreadPoolExecutor(max_workers=2) as executor:
        future_to_image = {executor.submit(process_single_image, image_path, output_folder, crop_mode, remove_bg): image_path for image_path in image_files}
        for idx, future in enumerate(future_to_image):
            result = future.result()
            if result:
                processed_images.append(result)
            # Update progress
            progress((idx + 1) / total_images, f"{idx + 1}/{total_images} images processed")
    
    # Create a zip file of the processed images
    output_zip_path = "processed_images.zip"
    with zipfile.ZipFile(output_zip_path, 'w') as zipf:
        for file in processed_images:
            zipf.write(file, os.path.basename(file))
    
    # Return the images and the zip file path
    return processed_images, output_zip_path

def gradio_interface(zip_file, crop_mode, remove_bg):
    progress = gr.Progress()  # Initialize progress
    return process_images(zip_file.name, crop_mode, remove_bg, progress)

# Create the Gradio interface
with gr.Blocks() as iface:
    gr.Markdown("# Image Background Removal and Resizing")
    gr.Markdown("Upload a ZIP or RAR file containing images, choose the crop mode, and get the processed images.")
    
    with gr.Row():
        zip_file = gr.File(label="Upload ZIP/RAR file of images", file_types=[".zip", ".rar"])
        crop_mode = gr.Radio(choices=["center", "top", "bottom", "left", "right"], label="Crop Mode", value="center")
        remove_bg = gr.Radio(choices=["yes", "no"], label="Remove Background", value="yes")

    gallery = gr.Gallery(label="Processed Images")
    output_zip = gr.File(label="Download Processed Images as ZIP")

    def process(zip_file, crop_mode, remove_bg):
        processed_images, zip_path = gradio_interface(zip_file, crop_mode, remove_bg)
        return processed_images, zip_path

    process_button = gr.Button("Process Images")
    process_button.click(process, inputs=[zip_file, crop_mode, remove_bg], outputs=[gallery, output_zip])

# Launch the interface
iface.launch()