Spaces:
Sleeping
Sleeping
File size: 26,556 Bytes
768c8db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
import os
import zipfile
import shutil
import time
from PIL import Image, ImageDraw
import io
from rembg import remove
import gradio as gr
from concurrent.futures import ThreadPoolExecutor
from transformers import pipeline
import numpy as np
import json
import os
def remove_background_rembg(input_path):
print(f"Removing background using rembg for image: {input_path}")
with open(input_path, 'rb') as i:
input_image = i.read()
output_image = remove(input_image)
img = Image.open(io.BytesIO(output_image)).convert("RGBA")
return img
def remove_background_bria(input_path):
print(f"Removing background using bria for image: {input_path}")
pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True, device=0)
pillow_image = pipe(input_path)
return pillow_image
def get_bounding_box_with_threshold(image, threshold):
# Convert image to numpy array
img_array = np.array(image)
# Get alpha channel
alpha = img_array[:,:,3]
# Find rows and columns where alpha > threshold
rows = np.any(alpha > threshold, axis=1)
cols = np.any(alpha > threshold, axis=0)
# Find the bounding box
top, bottom = np.where(rows)[0][[0, -1]]
left, right = np.where(cols)[0][[0, -1]]
if left < right and top < bottom:
return (left, top, right, bottom)
else:
return None
def position_logic(image_path, use_threshold=True):
image = Image.open(image_path)
image = image.convert("RGBA")
# Get the bounding box of the non-blank area with threshold
if use_threshold:
bbox = get_bounding_box_with_threshold(image, threshold=10)
else:
bbox = image.getbbox()
log = []
if bbox:
# Check 1 pixel around the image for non-transparent pixels
width, height = image.size
cropped_sides = []
# Define tolerance for transparency
tolerance = 30 # Adjust this value as needed
# Check top edge
if any(image.getpixel((x, 0))[3] > tolerance for x in range(width)):
cropped_sides.append("top")
# Check bottom edge
if any(image.getpixel((x, height-1))[3] > tolerance for x in range(width)):
cropped_sides.append("bottom")
# Check left edge
if any(image.getpixel((0, y))[3] > tolerance for y in range(height)):
cropped_sides.append("left")
# Check right edge
if any(image.getpixel((width-1, y))[3] > tolerance for y in range(height)):
cropped_sides.append("right")
if cropped_sides:
info_message = f"Info for {os.path.basename(image_path)}: The following sides of the image may contain cropped objects: {', '.join(cropped_sides)}"
print(info_message)
log.append({"info": info_message})
else:
info_message = f"Info for {os.path.basename(image_path)}: The image is not cropped."
print(info_message)
log.append({"info": info_message})
# Crop the image to the bounding box
image = image.crop(bbox)
log.append({"action": "crop", "bbox": [str(bbox[0]), str(bbox[1]), str(bbox[2]), str(bbox[3])]})
# Calculate the new size to expand the image
padding = 125
target_size = 1080
aspect_ratio = image.width / image.height
if len(cropped_sides) == 4:
# If the image is cropped on all sides, center crop it to fit the canvas
if aspect_ratio > 1: # Landscape
new_height = target_size
new_width = int(new_height * aspect_ratio)
left = (new_width - target_size) // 2
image = image.resize((new_width, new_height), Image.LANCZOS)
image = image.crop((left, 0, left + target_size, target_size))
else: # Portrait or square
new_width = target_size
new_height = int(new_width / aspect_ratio)
top = (new_height - target_size) // 2
image = image.resize((new_width, new_height), Image.LANCZOS)
image = image.crop((0, top, target_size, top + target_size))
log.append({"action": "center_crop_resize", "new_size": f"{target_size}x{target_size}"})
x, y = 0, 0
elif not cropped_sides:
# If the image is not cropped, expand it from center until it touches the padding
new_height = 1080 - 2 * padding # Ensure it touches top and bottom padding
new_width = int(new_height * aspect_ratio)
if new_width > 1080 - 2 * padding:
# If width exceeds available space, adjust based on width
new_width = 1080 - 2 * padding
new_height = int(new_width / aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
x = (1080 - new_width) // 2
y = 1080 - new_height - padding
else:
# New logic for handling cropped top and left, or top and right
if set(cropped_sides) == {"top", "left"} or set(cropped_sides) == {"top", "right"}:
new_height = target_size - padding # Ensure bottom padding
new_width = int(new_height * aspect_ratio)
# If new width exceeds canvas width, adjust based on width
if new_width > target_size:
new_width = target_size
new_height = int(new_width / aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
# Set position
if "left" in cropped_sides:
x = 0
else: # right in cropped_sides
x = target_size - new_width
y = 0
# If the resized image is taller than the canvas minus padding, crop from the bottom
if new_height > target_size - padding:
crop_bottom = new_height - (target_size - padding)
image = image.crop((0, 0, new_width, new_height - crop_bottom))
new_height = target_size - padding
log.append({"action": "crop_vertical", "bottom_pixels_removed": str(crop_bottom)})
log.append({"action": "position", "x": str(x), "y": str(y)})
elif set(cropped_sides) == {"bottom", "left"} or set(cropped_sides) == {"bottom", "right"}:
# Handle bottom & left or bottom & right cropped images
new_height = target_size - padding # Ensure top padding
new_width = int(new_height * aspect_ratio)
# If new width exceeds canvas width, adjust based on width
if new_width > target_size - padding:
new_width = target_size - padding
new_height = int(new_width / aspect_ratio)
# Resize the image without cropping or stretching
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
# Set position
if "left" in cropped_sides:
x = 0
else: # right in cropped_sides
x = target_size - new_width
y = target_size - new_height
log.append({"action": "position", "x": str(x), "y": str(y)})
elif set(cropped_sides) == {"bottom", "left", "right"}:
# Expand the image from the center
new_width = target_size
new_height = int(new_width / aspect_ratio)
if new_height < target_size:
new_height = target_size
new_width = int(new_height * aspect_ratio)
image = image.resize((new_width, new_height), Image.LANCZOS)
# Crop to fit the canvas
left = (new_width - target_size) // 2
top = 0
image = image.crop((left, top, left + target_size, top + target_size))
log.append({"action": "expand_and_crop", "new_size": f"{target_size}x{target_size}"})
x, y = 0, 0
elif cropped_sides == ["top"]:
# New logic for handling only top-cropped images
if image.width > image.height:
new_width = target_size
new_height = int(target_size / aspect_ratio)
else:
new_height = target_size - padding # Ensure bottom padding
new_width = int(new_height * aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
x = (1080 - new_width) // 2
y = 0 # Align to top
# Apply padding only to non-cropped sides
x = max(padding, min(x, 1080 - new_width - padding))
elif cropped_sides in [["right"], ["left"]]:
# New logic for handling only right-cropped or left-cropped images
if image.width > image.height:
new_width = target_size - padding # Ensure padding on non-cropped side
new_height = int(new_width / aspect_ratio)
else:
new_height = target_size - (2 * padding) # Ensure top and bottom padding
new_width = int(new_height * aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
if cropped_sides == ["right"]:
x = 1080 - new_width # Align to right
else: # cropped_sides == ["left"]
x = 0 # Align to left
y = 1080 - new_height - padding # Respect bottom padding
# Ensure top padding is respected
if y < padding:
y = padding
log.append({"action": "position", "x": str(x), "y": str(y)})
elif set(cropped_sides) == {"left", "right"}:
# Logic for handling images cropped on both left and right sides
new_width = 1080 # Expand to full width of canvas
# Calculate the aspect ratio of the original image
aspect_ratio = image.width / image.height
# Calculate the new height while maintaining aspect ratio
new_height = int(new_width / aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
# Set horizontal position (always 0 as it spans full width)
x = 0
# Calculate vertical position to respect bottom padding
y = 1080 - new_height - padding
# If the resized image is taller than the canvas, crop from the top only
if new_height > 1080 - padding:
crop_top = new_height - (1080 - padding)
image = image.crop((0, crop_top, new_width, new_height))
new_height = 1080 - padding
y = 0
log.append({"action": "crop_vertical", "top_pixels_removed": str(crop_top)})
else:
# Align the image to the bottom with padding
y = 1080 - new_height - padding
log.append({"action": "position", "x": str(x), "y": str(y)})
elif cropped_sides == ["bottom"]:
# Logic for handling images cropped on the bottom side
# Calculate the aspect ratio of the original image
aspect_ratio = image.width / image.height
if aspect_ratio < 1: # Portrait orientation
new_height = 1080 - padding # Full height with top padding
new_width = int(new_height * aspect_ratio)
# If the new width exceeds the canvas width, adjust it
if new_width > 1080:
new_width = 1080
new_height = int(new_width / aspect_ratio)
else: # Landscape orientation
new_width = 1080 - (2 * padding)
new_height = int(new_width / aspect_ratio)
# If the new height exceeds the canvas height, adjust it
if new_height > 1080:
new_height = 1080
new_width = int(new_height * aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
# Set horizontal position (centered)
x = (1080 - new_width) // 2
# Set vertical position (touching bottom edge for all cases)
y = 1080 - new_height
log.append({"action": "position", "x": str(x), "y": str(y)})
else:
# Use the original resizing logic for other partially cropped images
if image.width > image.height:
new_width = target_size
new_height = int(target_size / aspect_ratio)
else:
new_height = target_size
new_width = int(target_size * aspect_ratio)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
log.append({"action": "resize", "new_width": str(new_width), "new_height": str(new_height)})
# Center horizontally for all images
x = (1080 - new_width) // 2
y = 1080 - new_height - padding
# Adjust positions for cropped sides
if "top" in cropped_sides:
y = 0
elif "bottom" in cropped_sides:
y = 1080 - new_height
if "left" in cropped_sides:
x = 0
elif "right" in cropped_sides:
x = 1080 - new_width
# Apply padding only to non-cropped sides, but keep horizontal centering
if "left" not in cropped_sides and "right" not in cropped_sides:
x = (1080 - new_width) // 2 # Always center horizontally
if "top" not in cropped_sides and "bottom" not in cropped_sides:
y = max(padding, min(y, 1080 - new_height - padding))
return log, image, x, y
def process_single_image(image_path, output_folder, bg_method, output_format, bg_choice, custom_color, watermark_path=None):
add_padding_line = False
padding = 125
filename = os.path.basename(image_path)
try:
print(f"Processing image: {filename}")
if bg_method == 'rembg':
image_with_no_bg = remove_background_rembg(image_path)
elif bg_method == 'bria':
image_with_no_bg = remove_background_bria(image_path)
temp_image_path = os.path.join(output_folder, f"temp_{filename}")
image_with_no_bg.save(temp_image_path, format='PNG')
log, new_image, x, y = position_logic(temp_image_path)
# Create a new 1080x1080 canvas with the appropriate background
if bg_choice == 'white':
canvas = Image.new("RGBA", (1080, 1080), "WHITE")
elif bg_choice == 'custom':
canvas = Image.new("RGBA", (1080, 1080), custom_color)
else: # transparent
canvas = Image.new("RGBA", (1080, 1080), (0, 0, 0, 0))
# Paste the resized image onto the canvas
canvas.paste(new_image, (x, y), new_image)
log.append({"action": "paste", "position": [str(x), str(y)]})
# Add visible black line for padding when background is not transparent
if add_padding_line:
draw = ImageDraw.Draw(canvas)
draw.rectangle([padding, padding, 1080 - padding, 1080 - padding], outline="black", width=5)
log.append({"action": "add_padding_line"})
output_ext = 'jpg' if output_format == 'JPG' else 'png'
output_filename = f"{os.path.splitext(filename)[0]}.{output_ext}"
output_path = os.path.join(output_folder, output_filename)
# Apply watermark only if the filename ends with "_01" and watermark_path is provided
if os.path.splitext(filename)[0].endswith("_01") and watermark_path:
watermark = Image.open(watermark_path).convert("RGBA")
canvas.paste(watermark, (0, 0), watermark)
log.append({"action": "add_watermark"})
if output_format == 'JPG':
canvas.convert('RGB').save(output_path, format='JPEG')
else:
canvas.save(output_path, format='PNG')
os.remove(temp_image_path)
print(f"Processed image path: {output_path}")
return [(output_path, image_path)], log
except Exception as e:
print(f"Error processing {filename}: {e}")
return None, None
def process_images(input_files, bg_method='rembg', watermark_path=None, output_format='PNG', bg_choice='transparent', custom_color="#ffffff", num_workers=4, progress=gr.Progress()):
start_time = time.time()
output_folder = "processed_images"
if os.path.exists(output_folder):
shutil.rmtree(output_folder)
os.makedirs(output_folder)
processed_images = []
original_images = []
all_logs = []
if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
# Handle zip file
input_folder = "temp_input"
if os.path.exists(input_folder):
shutil.rmtree(input_folder)
os.makedirs(input_folder)
try:
with zipfile.ZipFile(input_files, 'r') as zip_ref:
zip_ref.extractall(input_folder)
except zipfile.BadZipFile as e:
print(f"Error extracting zip file: {e}")
return [], None, 0
image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp'))]
elif isinstance(input_files, list):
# Handle multiple files
image_files = input_files
else:
# Handle single file
image_files = [input_files]
total_images = len(image_files)
print(f"Total images to process: {total_images}")
avg_processing_time = 0
with ThreadPoolExecutor(max_workers=num_workers) as executor:
future_to_image = {executor.submit(process_single_image, image_path, output_folder, bg_method, output_format, bg_choice, custom_color, watermark_path): image_path for image_path in image_files}
for idx, future in enumerate(future_to_image):
try:
start_time_image = time.time()
result, log = future.result()
end_time_image = time.time()
image_processing_time = end_time_image - start_time_image
# Update average processing time
avg_processing_time = (avg_processing_time * idx + image_processing_time) / (idx + 1)
if result:
processed_images.extend(result)
original_images.append(future_to_image[future])
all_logs.append({os.path.basename(future_to_image[future]): log})
# Estimate remaining time
remaining_images = total_images - (idx + 1)
estimated_remaining_time = remaining_images * avg_processing_time
progress((idx + 1) / total_images, f"{idx + 1}/{total_images} images processed. Estimated time remaining: {estimated_remaining_time:.2f} seconds")
except Exception as e:
print(f"Error processing image {future_to_image[future]}: {e}")
output_zip_path = "processed_images.zip"
with zipfile.ZipFile(output_zip_path, 'w') as zipf:
for file, _ in processed_images:
zipf.write(file, os.path.basename(file))
# Write the comprehensive log for all images
with open(os.path.join(output_folder, 'process_log.json'), 'w') as log_file:
json.dump(all_logs, log_file, indent=4)
print("Comprehensive log saved to", os.path.join(output_folder, 'process_log.json'))
end_time = time.time()
processing_time = end_time - start_time
print(f"Processing time: {processing_time} seconds")
return original_images, processed_images, output_zip_path, processing_time
def gradio_interface(input_files, bg_method, watermark, output_format, bg_choice, custom_color, num_workers):
progress = gr.Progress()
watermark_path = watermark.name if watermark else None
# Check input_files, is it single image, list image, or zip/rar
if isinstance(input_files, str) and input_files.lower().endswith(('.zip', '.rar')):
return process_images(input_files, bg_method, watermark_path, output_format, bg_choice, custom_color, num_workers, progress)
elif isinstance(input_files, list):
return process_images(input_files, bg_method, watermark_path, output_format, bg_choice, custom_color, num_workers, progress)
else:
return process_images(input_files.name, bg_method, watermark_path, output_format, bg_choice, custom_color, num_workers, progress)
def show_color_picker(bg_choice):
if bg_choice == 'custom':
return gr.update(visible=True)
return gr.update(visible=False)
def update_compare(evt: gr.SelectData):
if isinstance(evt.value, dict) and 'caption' in evt.value:
input_path = evt.value['caption']
output_path = evt.value['image']['path']
input_path = input_path.split("Input: ")[-1]
# Open the original and processed images
original_img = Image.open(input_path)
processed_img = Image.open(output_path)
# Calculate the aspect ratios
original_ratio = f"{original_img.width}x{original_img.height}"
processed_ratio = f"{processed_img.width}x{processed_img.height}"
return gr.update(value=input_path), gr.update(value=output_path), gr.update(value=original_ratio), gr.update(value=processed_ratio)
else:
print("No caption found in selection")
return gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)
def process(input_files, bg_method, watermark, output_format, bg_choice, custom_color, num_workers):
_, processed_images, zip_path, time_taken = gradio_interface(input_files, bg_method, watermark, output_format, bg_choice, custom_color, num_workers)
processed_images_with_captions = [(img, f"Input: {caption}") for img, caption in processed_images]
return processed_images_with_captions, zip_path, f"{time_taken:.2f} seconds"
with gr.Blocks() as iface:
gr.Markdown("# Image Background Removal and Resizing with Optional Watermark")
gr.Markdown("Choose to upload multiple images or a ZIP/RAR file, select the crop mode, optionally upload a watermark image, and choose the output format.")
with gr.Row():
input_files = gr.File(label="Upload Image or ZIP/RAR file", file_types=[".zip", ".rar", "image"], interactive=True)
watermark = gr.File(label="Upload Watermark Image (Optional)", file_types=[".png"])
with gr.Row():
output_format = gr.Radio(choices=["PNG", "JPG"], label="Output Format", value="JPG")
num_workers = gr.Slider(minimum=1, maximum=16, step=1, label="Number of Workers", value=5)
with gr.Row():
bg_method = gr.Radio(choices=["bria", "rembg"], label="Background Removal Method", value="bria")
bg_choice = gr.Radio(choices=["transparent", "white", "custom"], label="Background Choice", value="white")
custom_color = gr.ColorPicker(label="Custom Background Color", value="#ffffff", visible=False)
process_button = gr.Button("Process Images")
with gr.Row():
gallery_processed = gr.Gallery(label="Processed Images")
with gr.Row():
image_original = gr.Image(label="Original Images", interactive=False)
image_processed = gr.Image(label="Processed Images", interactive=False)
with gr.Row():
original_ratio = gr.Textbox(label="Original Ratio")
processed_ratio = gr.Textbox(label="Processed Ratio")
with gr.Row():
output_zip = gr.File(label="Download Processed Images as ZIP")
processing_time = gr.Textbox(label="Processing Time (seconds)")
bg_choice.change(show_color_picker, inputs=bg_choice, outputs=custom_color)
process_button.click(process, inputs=[input_files, bg_method, watermark, output_format, bg_choice, custom_color, num_workers], outputs=[gallery_processed, output_zip, processing_time])
gallery_processed.select(update_compare, outputs=[image_original, image_processed, original_ratio, processed_ratio])
iface.launch()
|