Image-Resize / app.py
Zeph27's picture
border color filter
2c91766
raw
history blame
12.7 kB
import os
import zipfile
import shutil
import time
from PIL import Image
import io
from rembg import remove
import gradio as gr
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
from transformers import pipeline
def colors_within_tolerance(color1, color2, tolerance):
return all(abs(c1 - c2) <= tolerance for c1, c2 in zip(color1, color2))
def check_border_colors(image_path, tolerance):
# Open the image
image = Image.open(image_path)
pixels = image.load()
width, height = image.size
# Get the color of the first pixel on the left and right borders
left_border_color = pixels[0, 0]
right_border_color = pixels[width - 1, 0]
# Check the left border
for y in range(height):
if not colors_within_tolerance(pixels[0, y], left_border_color, tolerance):
return False
# Check the right border
for y in range(height):
if not colors_within_tolerance(pixels[width - 1, y], right_border_color, tolerance):
return False
return True
def resize_and_crop_image(image_path, target_size=(1080, 1080), crop_mode='center'):
print(f"Resizing and cropping image: {image_path}")
with Image.open(image_path) as img:
width, height = img.size
print(f"Original image size: {width}x{height}")
# Calculate the scaling factor
scaling_factor = max(target_size[0] / width, target_size[1] / height)
# Resize the image with high-quality resampling
new_size = (int(width * scaling_factor), int(height * scaling_factor))
resized_img = img.resize(new_size, Image.LANCZOS)
print(f"Resized image size: {new_size}")
if crop_mode == 'center':
left = (resized_img.width - target_size[0]) / 2
top = (resized_img.height - target_size[1]) / 2
elif crop_mode == 'top':
left = (resized_img.width - target_size[0]) / 2
top = 0
elif crop_mode == 'bottom':
left = (resized_img.width - target_size[0]) / 2
top = resized_img.height - target_size[1]
elif crop_mode == 'left':
left = 0
top = (resized_img.height - target_size[1]) / 2
elif crop_mode == 'right':
left = resized_img.width - target_size[0]
top = (resized_img.height - target_size[1]) / 2
right = left + target_size[0]
bottom = top + target_size[1]
# Crop the image
cropped_img = resized_img.crop((left, top, right, bottom))
print(f"Cropped image size: {cropped_img.size}")
return cropped_img
def remove_background_rembg(input_path):
print(f"Removing background using rembg for image: {input_path}")
with open(input_path, 'rb') as i:
input_image = i.read()
output_image = remove(input_image)
img = Image.open(io.BytesIO(output_image)).convert("RGBA")
return img
def remove_background_bria(input_path):
print(f"Removing background using bria for image: {input_path}")
pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True)
pillow_image = pipe(input_path) # applies mask on input and returns a pillow image
return pillow_image
def process_single_image(image_path, output_folder, crop_mode, bg_method, output_format, bg_choice, custom_color, watermark_path=None):
filename = os.path.basename(image_path)
try:
print(f"Processing image: {filename}")
if bg_method == 'rembg':
# Remove background using rembg
image_with_no_bg = remove_background_rembg(image_path)
elif bg_method == 'bria':
# Remove background using bria
image_with_no_bg = remove_background_bria(image_path)
temp_image_path = os.path.join(output_folder, f"temp_{filename}")
image_with_no_bg.save(temp_image_path, format='PNG')
# Check border colors and categorize
if check_border_colors(temp_image_path, tolerance=50):
print(f"Border colors are the same for image: {filename}")
# Create a new 1080x1080 canvas
if bg_choice == 'transparent':
new_image = Image.new("RGBA", (1080, 1080), (255, 255, 255, 0))
else:
new_image = Image.new("RGBA", (1080, 1080), custom_color)
# Scale image to fit inside the canvas without stretching
width, height = image_with_no_bg.size
scaling_factor = min(1080 / width, 1080 / height)
new_size = (int(width * scaling_factor), int(height * scaling_factor))
resized_img = image_with_no_bg.resize(new_size, Image.LANCZOS)
print(f"Resized image size: {new_size}")
new_image.paste(resized_img, ((1080 - resized_img.width) // 2, (1080 - resized_img.height) // 2))
else:
print(f"Border colors are different for image: {filename}")
new_image = resize_and_crop_image(temp_image_path, crop_mode=crop_mode)
# Change background color if needed
if bg_choice == 'white':
new_image = new_image.convert("RGBA")
white_bg = Image.new("RGBA", new_image.size, "WHITE")
new_image = Image.alpha_composite(white_bg, new_image)
elif bg_choice == 'custom':
new_image = new_image.convert("RGBA")
custom_bg = Image.new("RGBA", new_image.size, custom_color)
new_image = Image.alpha_composite(custom_bg, new_image)
# Save both versions of the image (with and without watermark)
images_paths = []
# Save without watermark
output_ext = 'jpg' if output_format == 'JPG' else 'png'
output_path_without_watermark = os.path.join(output_folder, f"without_watermark_{os.path.splitext(filename)[0]}.{output_ext}")
if output_format == 'JPG':
new_image.convert('RGB').save(output_path_without_watermark, format='JPEG')
else:
new_image.save(output_path_without_watermark, format='PNG')
images_paths.append(output_path_without_watermark)
# Apply watermark if provided and save the version with watermark
if watermark_path:
watermark = Image.open(watermark_path).convert("RGBA")
new_image_with_watermark = new_image.copy()
new_image_with_watermark.paste(watermark, (0, 0), watermark)
output_path_with_watermark = os.path.join(output_folder, f"with_watermark_{os.path.splitext(filename)[0]}.{output_ext}")
if output_format == 'JPG':
new_image_with_watermark.convert('RGB').save(output_path_with_watermark, format='JPEG')
else:
new_image_with_watermark.save(output_path_with_watermark, format='PNG')
images_paths.append(output_path_with_watermark)
# Remove the temporary file
os.remove(temp_image_path)
print(f"Processed image paths: {images_paths}")
return images_paths
except Exception as e:
print(f"Error processing {filename}: {e}")
return None
def process_images(zip_file, crop_mode='center', bg_method='rembg', watermark_path=None, output_format='PNG', bg_choice='transparent', custom_color="#ffffff", num_workers=4, progress=gr.Progress()):
start_time = time.time()
# Create a temporary directory
input_folder = "temp_input"
output_folder = "temp_output"
if os.path.exists(input_folder):
shutil.rmtree(input_folder)
if os.path.exists(output_folder):
shutil.rmtree(output_folder)
os.makedirs(input_folder)
os.makedirs(output_folder)
# Extract the zip file
try:
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall(input_folder)
except zipfile.BadZipFile as e:
print(f"Error extracting zip file: {e}")
return [], None, 0
processed_images = []
image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif'))]
total_images = len(image_files)
print(f"Total images to process: {total_images}")
# Process images using ThreadPoolExecutor for I/O-bound tasks and ProcessPoolExecutor for CPU-bound tasks
with ThreadPoolExecutor(max_workers=num_workers) as thread_executor:
with ProcessPoolExecutor(max_workers=num_workers) as process_executor:
future_to_image = {thread_executor.submit(process_single_image, image_path, output_folder, crop_mode, bg_method, output_format, bg_choice, custom_color, watermark_path): image_path for image_path in image_files}
for idx, future in enumerate(future_to_image):
try:
result = future.result()
if result:
processed_images.extend(result)
except Exception as e:
print(f"Error processing image {future_to_image[future]}: {e}")
# Update progress
progress((idx + 1) / total_images, f"{idx + 1}/{total_images} images processed")
# Create a zip file of the processed images
output_zip_path = "processed_images.zip"
with zipfile.ZipFile(output_zip_path, 'w') as zipf:
for file in processed_images:
if "with_watermark" in file:
zipf.write(file, os.path.join("with_watermark", os.path.basename(file)))
else:
zipf.write(file, os.path.join("without_watermark", os.path.basename(file)))
end_time = time.time()
processing_time = end_time - start_time
print(f"Processing time: {processing_time} seconds")
# Return the images, the zip file path, and processing time
return processed_images, output_zip_path, processing_time
def gradio_interface(zip_file, crop_mode, bg_method, watermark, output_format, bg_choice, custom_color, num_workers):
progress = gr.Progress() # Initialize progress
watermark_path = watermark.name if watermark else None
return process_images(zip_file.name, crop_mode, bg_method, watermark_path, output_format, bg_choice, custom_color, num_workers, progress)
def show_bg_choice(output_format):
if output_format == 'PNG':
return gr.update(visible=True)
return gr.update(visible=False)
def show_color_picker(bg_choice):
if bg_choice == 'custom':
return gr.update(visible=True)
return gr.update(visible=False)
# Create the Gradio interface
with gr.Blocks() as iface:
gr.Markdown("# Image Background Removal and Resizing with Optional Watermark")
gr.Markdown("Upload a ZIP or RAR file containing images, choose the crop mode, optionally upload a watermark image, and select the output format.")
with gr.Row():
zip_file = gr.File(label="Upload ZIP/RAR file of images", file_types=[".zip", ".rar"])
watermark = gr.File(label="Upload Watermark Image (Optional)", file_types=[".png"])
with gr.Row():
crop_mode = gr.Radio(choices=["center", "top", "bottom", "left", "right"], label="Crop Mode", value="center")
output_format = gr.Radio(choices=["PNG", "JPG"], label="Output Format", value="PNG")
num_workers = gr.Slider(minimum=1, maximum=16, step=1, label="Number of Workers", value=2)
with gr.Row():
bg_method = gr.Radio(choices=["bria", "rembg"], label="Background Removal Method", value="bria", visible=True)
bg_choice = gr.Radio(choices=["transparent", "white", "custom"], label="Background Choice", value="transparent", visible=True)
custom_color = gr.ColorPicker(label="Custom Background Color", value="#ffffff", visible=False)
bg_choice.change(show_color_picker, inputs=bg_choice, outputs=custom_color)
output_format.change(show_bg_choice, inputs=output_format, outputs=bg_choice)
gallery = gr.Gallery(label="Processed Images")
output_zip = gr.File(label="Download Processed Images as ZIP")
processing_time = gr.Textbox(label="Processing Time (seconds)")
def process(zip_file, crop_mode, bg_method, watermark, output_format, bg_choice, custom_color, num_workers):
processed_images, zip_path, time_taken = gradio_interface(zip_file, crop_mode, bg_method, watermark, output_format, bg_choice, custom_color, num_workers)
return processed_images, zip_path, f"{time_taken:.2f} seconds"
process_button = gr.Button("Process Images")
process_button.click(process, inputs=[zip_file, crop_mode, bg_method, watermark, output_format, bg_choice, custom_color, num_workers], outputs=[gallery, output_zip, processing_time])
# Launch the interface
iface.launch()