import os import zipfile import shutil import time from PIL import Image import io from rembg import remove import gradio as gr from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor from transformers import pipeline def resize_and_crop_image(image_path, target_size=(1080, 1080), crop_mode='center'): with Image.open(image_path) as img: width, height = img.size # Calculate the scaling factor scaling_factor = max(target_size[0] / width, target_size[1] / height) # Resize the image with high-quality resampling new_size = (int(width * scaling_factor), int(height * scaling_factor)) resized_img = img.resize(new_size, Image.LANCZOS) if crop_mode == 'center': left = (resized_img.width - target_size[0]) / 2 top = (resized_img.height - target_size[1]) / 2 elif crop_mode == 'top': left = (resized_img.width - target_size[0]) / 2 top = 0 elif crop_mode == 'bottom': left = (resized_img.width - target_size[0]) / 2 top = resized_img.height - target_size[1] elif crop_mode == 'left': left = 0 top = (resized_img.height - target_size[1]) / 2 elif crop_mode == 'right': left = resized_img.width - target_size[0] top = (resized_img.height - target_size[1]) / 2 right = left + target_size[0] bottom = top + target_size[1] # Crop the image cropped_img = resized_img.crop((left, top, right, bottom)) return cropped_img def remove_background_rembg(input_path): with open(input_path, 'rb') as i: input_image = i.read() output_image = remove(input_image) img = Image.open(io.BytesIO(output_image)).convert("RGBA") return img def remove_background_bria(input_path): pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True) pillow_image = pipe(input_path) # applies mask on input and returns a pillow image return pillow_image def process_single_image(image_path, output_folder, crop_mode, remove_bg, bg_method, output_format, bg_choice, watermark_path=None): filename = os.path.basename(image_path) try: if remove_bg == 'yes': if bg_method == 'rembg': # Remove background using rembg image_with_no_bg = remove_background_rembg(image_path) elif bg_method == 'bria': # Remove background using bria image_with_no_bg = remove_background_bria(image_path) temp_image_path = os.path.join(output_folder, f"temp_{filename}") image_with_no_bg.save(temp_image_path, format='PNG') else: temp_image_path = image_path # Resize and crop the image with or without background removal new_image = resize_and_crop_image(temp_image_path, crop_mode=crop_mode) # Save both versions of the image (with and without watermark) images_paths = [] # Save without watermark output_ext = 'jpg' if output_format == 'JPG' else 'png' output_path_without_watermark = os.path.join(output_folder, f"without_watermark_{os.path.splitext(filename)[0]}.{output_ext}") if output_format == 'JPG': new_image.convert('RGB').save(output_path_without_watermark, format='JPEG') else: new_image.save(output_path_without_watermark, format='PNG') images_paths.append(output_path_without_watermark) # Apply watermark if provided and save the version with watermark if watermark_path: watermark = Image.open(watermark_path).convert("RGBA") new_image_with_watermark = new_image.copy() new_image_with_watermark.paste(watermark, (0, 0), watermark) output_path_with_watermark = os.path.join(output_folder, f"with_watermark_{os.path.splitext(filename)[0]}.{output_ext}") if output_format == 'JPG': new_image_with_watermark.convert('RGB').save(output_path_with_watermark, format='JPEG') else: new_image_with_watermark.save(output_path_with_watermark, format='PNG') images_paths.append(output_path_with_watermark) if remove_bg == 'yes': # Remove the temporary file os.remove(temp_image_path) return images_paths except Exception as e: print(f"Error processing {filename}: {e}") return None def process_images(zip_file, crop_mode='center', remove_bg='yes', bg_method='rembg', watermark_path=None, output_format='PNG', bg_choice='transparent', num_workers=4, progress=gr.Progress()): start_time = time.time() # Create a temporary directory input_folder = "temp_input" output_folder = "temp_output" if os.path.exists(input_folder): shutil.rmtree(input_folder) if os.path.exists(output_folder): shutil.rmtree(output_folder) os.makedirs(input_folder) os.makedirs(output_folder) # Extract the zip file with zipfile.ZipFile(zip_file, 'r') as zip_ref: zip_ref.extractall(input_folder) processed_images = [] image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif'))] total_images = len(image_files) # Process images using ThreadPoolExecutor for I/O-bound tasks and ProcessPoolExecutor for CPU-bound tasks with ThreadPoolExecutor(max_workers=num_workers) as thread_executor: with ProcessPoolExecutor(max_workers=num_workers) as process_executor: future_to_image = {thread_executor.submit(process_single_image, image_path, output_folder, crop_mode, remove_bg, bg_method, output_format, bg_choice, watermark_path): image_path for image_path in image_files} for idx, future in enumerate(future_to_image): result = future.result() if result: processed_images.extend(result) # Update progress progress((idx + 1) / total_images, f"{idx + 1}/{total_images} images processed") # Create a zip file of the processed images output_zip_path = "processed_images.zip" with zipfile.ZipFile(output_zip_path, 'w') as zipf: for file in processed_images: if "with_watermark" in file: zipf.write(file, os.path.join("with_watermark", os.path.basename(file))) else: zipf.write(file, os.path.join("without_watermark", os.path.basename(file))) end_time = time.time() processing_time = end_time - start_time # Return the images, the zip file path, and processing time return processed_images, output_zip_path, processing_time def gradio_interface(zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers): progress = gr.Progress() # Initialize progress watermark_path = watermark.name if watermark else None return process_images(zip_file.name, crop_mode, remove_bg, bg_method, watermark_path, output_format, bg_choice, num_workers, progress) def show_bg_choice(remove_bg, output_format): if remove_bg == 'yes' and output_format == 'PNG': return gr.update(visible=True) return gr.update(visible=False) def show_bg_method(remove_bg): if remove_bg == 'yes': return gr.update(visible=True) return gr.update(visible=False) # Create the Gradio interface with gr.Blocks() as iface: gr.Markdown("# Image Background Removal and Resizing with Optional Watermark") gr.Markdown("Upload a ZIP or RAR file containing images, choose the crop mode, optionally upload a watermark image, and select the output format.") with gr.Row(): zip_file = gr.File(label="Upload ZIP/RAR file of images", file_types=[".zip", ".rar"]) watermark = gr.File(label="Upload Watermark Image (Optional)", file_types=[".png"]) with gr.Row(): crop_mode = gr.Radio(choices=["center", "top", "bottom", "left", "right"], label="Crop Mode", value="center") remove_bg = gr.Radio(choices=["yes", "no"], label="Remove Background", value="yes") output_format = gr.Radio(choices=["PNG", "JPG"], label="Output Format", value="PNG") num_workers = gr.Slider(minimum=1, maximum=16, step=1, label="Number of Workers", value=2) with gr.Row(): bg_method = gr.Radio(choices=["bria", "rembg"], label="Background Removal Method", value="bria", visible=True) bg_choice = gr.Radio(choices=["transparent", "white"], label="Background Choice", value="transparent", visible=True) remove_bg.change(show_bg_choice, inputs=[remove_bg, output_format], outputs=bg_choice) remove_bg.change(show_bg_method, inputs=remove_bg, outputs=bg_method) output_format.change(show_bg_choice, inputs=[remove_bg, output_format], outputs=bg_choice) gallery = gr.Gallery(label="Processed Images") output_zip = gr.File(label="Download Processed Images as ZIP") processing_time = gr.Textbox(label="Processing Time (seconds)") def process(zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers): processed_images, zip_path, time_taken = gradio_interface(zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers) return processed_images, zip_path, f"{time_taken:.2f} seconds" process_button = gr.Button("Process Images") process_button.click(process, inputs=[zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers], outputs=[gallery, output_zip, processing_time]) # Launch the interface iface.launch()