arjahojnik commited on
Commit
00403f8
·
verified ·
1 Parent(s): 1b9a999

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -8
app.py CHANGED
@@ -8,22 +8,22 @@ from tensorflow.keras.preprocessing.sequence import pad_sequences
8
  import pickle
9
  import re
10
 
11
- # Load your models
12
  gru_model = load_model("best_GRU_tuning_model.h5")
13
  lstm_model = load_model("LSTM_model.h5")
14
  bilstm_model = load_model("BiLSTM_model.h5")
15
 
16
- # Load your tokenizer
17
  with open("my_tokenizer.pkl", "rb") as f:
18
  tokenizer = pickle.load(f)
19
 
20
- # Preprocessing function for GRU, LSTM, and BiLSTM
21
  def preprocess_text(text):
22
  text = text.lower()
23
  text = re.sub(r"[^a-zA-Z\s]", "", text).strip()
24
  return text
25
 
26
- # GRU prediction function
27
  def predict_with_gru(text):
28
  cleaned = preprocess_text(text)
29
  seq = tokenizer.texts_to_sequences([cleaned])
@@ -32,7 +32,7 @@ def predict_with_gru(text):
32
  predicted_class = np.argmax(probs, axis=1)[0]
33
  return int(predicted_class + 1)
34
 
35
- # LSTM prediction function
36
  def predict_with_lstm(text):
37
  cleaned = preprocess_text(text)
38
  seq = tokenizer.texts_to_sequences([cleaned])
@@ -41,7 +41,7 @@ def predict_with_lstm(text):
41
  predicted_class = np.argmax(probs, axis=1)[0]
42
  return int(predicted_class + 1)
43
 
44
- # BiLSTM prediction function
45
  def predict_with_bilstm(text):
46
  cleaned = preprocess_text(text)
47
  seq = tokenizer.texts_to_sequences([cleaned])
@@ -94,8 +94,11 @@ with gr.Blocks(css=".gradio-container { max-width: 900px; margin: auto; padding:
94
  placeholder="Type your review here..."
95
  )
96
 
 
 
 
97
  with gr.Column():
98
- analyze_button = gr.Button("Analyze Sentiment")
99
 
100
  with gr.Row():
101
  with gr.Column():
@@ -135,5 +138,5 @@ with gr.Blocks(css=".gradio-container { max-width: 900px; margin: auto; padding:
135
  ]
136
  )
137
 
138
- # Launch the app
139
  demo.launch()
 
8
  import pickle
9
  import re
10
 
11
+ # Load models
12
  gru_model = load_model("best_GRU_tuning_model.h5")
13
  lstm_model = load_model("LSTM_model.h5")
14
  bilstm_model = load_model("BiLSTM_model.h5")
15
 
16
+ # Load tokenizer
17
  with open("my_tokenizer.pkl", "rb") as f:
18
  tokenizer = pickle.load(f)
19
 
20
+
21
  def preprocess_text(text):
22
  text = text.lower()
23
  text = re.sub(r"[^a-zA-Z\s]", "", text).strip()
24
  return text
25
 
26
+
27
  def predict_with_gru(text):
28
  cleaned = preprocess_text(text)
29
  seq = tokenizer.texts_to_sequences([cleaned])
 
32
  predicted_class = np.argmax(probs, axis=1)[0]
33
  return int(predicted_class + 1)
34
 
35
+
36
  def predict_with_lstm(text):
37
  cleaned = preprocess_text(text)
38
  seq = tokenizer.texts_to_sequences([cleaned])
 
41
  predicted_class = np.argmax(probs, axis=1)[0]
42
  return int(predicted_class + 1)
43
 
44
+
45
  def predict_with_bilstm(text):
46
  cleaned = preprocess_text(text)
47
  seq = tokenizer.texts_to_sequences([cleaned])
 
94
  placeholder="Type your review here..."
95
  )
96
 
97
+ analyze_button = gr.Button("Analyze Sentiment", variant="primary")
98
+ analyze_button.style(full_width=False)
99
+
100
  with gr.Column():
101
+ statistics_output = gr.Textbox(label="Statistics (Lowest, Highest, Average)", interactive=False)
102
 
103
  with gr.Row():
104
  with gr.Column():
 
138
  ]
139
  )
140
 
141
+
142
  demo.launch()