Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,87 +1,113 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
from tensorflow.keras.models import load_model
|
4 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
import pickle
|
6 |
-
import
|
7 |
-
|
8 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Disable GPU
|
9 |
-
|
10 |
|
|
|
11 |
gru_model = load_model("best_GRU_tuning_model.h5")
|
12 |
lstm_model = load_model("LSTM_model.h5")
|
13 |
bilstm_model = load_model("BiLSTM_model.h5")
|
14 |
|
15 |
-
|
16 |
with open("my_tokenizer.pkl", "rb") as f:
|
17 |
tokenizer = pickle.load(f)
|
18 |
|
19 |
-
|
20 |
def preprocess_text(text):
|
21 |
text = text.lower()
|
22 |
text = re.sub(r'[^a-zA-Z\s]', '', text).strip()
|
23 |
return text
|
24 |
|
25 |
-
|
26 |
def predict_sentiment(model, text):
|
|
|
|
|
|
|
27 |
cleaned = preprocess_text(text)
|
|
|
|
|
|
|
28 |
seq = tokenizer.texts_to_sequences([cleaned])
|
|
|
|
|
|
|
29 |
padded_seq = pad_sequences(seq, maxlen=200)
|
30 |
probs = model.predict(padded_seq)
|
31 |
predicted_class = np.argmax(probs, axis=1)[0]
|
32 |
rating = predicted_class + 1
|
33 |
return rating, probs[0]
|
34 |
|
35 |
-
|
36 |
def predict_all_models(text):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
return results
|
54 |
|
55 |
-
|
56 |
def create_interface():
|
57 |
with gr.Blocks() as demo:
|
58 |
gr.Markdown("# Sentiment Analysis App")
|
59 |
gr.Markdown("Predict the sentiment of your text review using RNN-based models.")
|
60 |
-
|
61 |
with gr.Row():
|
62 |
text_input = gr.Textbox(label="Enter your text here:", placeholder="Type your review here...")
|
63 |
-
|
64 |
with gr.Row():
|
65 |
gr.Markdown("### Predicted Sentiment")
|
66 |
gru_output = gr.Textbox(label="GRU Model")
|
67 |
lstm_output = gr.Textbox(label="LSTM Model")
|
68 |
bilstm_output = gr.Textbox(label="BiLSTM Model")
|
69 |
-
|
70 |
with gr.Row():
|
71 |
gr.Markdown("### Statistics")
|
72 |
stats_output = gr.Textbox(label="Lowest, Highest, Average")
|
73 |
-
|
|
|
74 |
predict_button = gr.Button("Predict Sentiment")
|
75 |
-
|
|
|
76 |
predict_button.click(
|
77 |
fn=predict_all_models,
|
78 |
inputs=text_input,
|
79 |
outputs=[gru_output, lstm_output, bilstm_output, stats_output]
|
80 |
)
|
81 |
-
|
82 |
return demo
|
83 |
|
84 |
-
|
85 |
if __name__ == "__main__":
|
86 |
demo = create_interface()
|
87 |
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Disable GPU
|
3 |
+
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
from tensorflow.keras.models import load_model
|
7 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
8 |
import pickle
|
9 |
+
import re # Added for text preprocessing
|
|
|
|
|
|
|
10 |
|
11 |
+
# Load your models
|
12 |
gru_model = load_model("best_GRU_tuning_model.h5")
|
13 |
lstm_model = load_model("LSTM_model.h5")
|
14 |
bilstm_model = load_model("BiLSTM_model.h5")
|
15 |
|
16 |
+
# Load your tokenizer
|
17 |
with open("my_tokenizer.pkl", "rb") as f:
|
18 |
tokenizer = pickle.load(f)
|
19 |
|
20 |
+
# Preprocess text
|
21 |
def preprocess_text(text):
|
22 |
text = text.lower()
|
23 |
text = re.sub(r'[^a-zA-Z\s]', '', text).strip()
|
24 |
return text
|
25 |
|
26 |
+
# Predict sentiment using a model
|
27 |
def predict_sentiment(model, text):
|
28 |
+
if not text or not text.strip(): # Check for empty input
|
29 |
+
return 0, [0, 0, 0, 0, 0] # Return default values for empty input
|
30 |
+
|
31 |
cleaned = preprocess_text(text)
|
32 |
+
if not cleaned: # Check if cleaned text is empty
|
33 |
+
return 0, [0, 0, 0, 0, 0] # Return default values for invalid input
|
34 |
+
|
35 |
seq = tokenizer.texts_to_sequences([cleaned])
|
36 |
+
if not seq or not seq[0]: # Check if tokenization failed
|
37 |
+
return 0, [0, 0, 0, 0, 0] # Return default values for invalid input
|
38 |
+
|
39 |
padded_seq = pad_sequences(seq, maxlen=200)
|
40 |
probs = model.predict(padded_seq)
|
41 |
predicted_class = np.argmax(probs, axis=1)[0]
|
42 |
rating = predicted_class + 1
|
43 |
return rating, probs[0]
|
44 |
|
45 |
+
# Main prediction function
|
46 |
def predict_all_models(text):
|
47 |
+
try:
|
48 |
+
# Predict with GRU
|
49 |
+
gru_rating, gru_probs = predict_sentiment(gru_model, text)
|
50 |
+
# Predict with LSTM
|
51 |
+
lstm_rating, lstm_probs = predict_sentiment(lstm_model, text)
|
52 |
+
# Predict with BiLSTM
|
53 |
+
bilstm_rating, bilstm_probs = predict_sentiment(bilstm_model, text)
|
54 |
+
|
55 |
+
# Calculate statistics
|
56 |
+
ratings = [gru_rating, lstm_rating, bilstm_rating]
|
57 |
+
lowest = min(ratings)
|
58 |
+
highest = max(ratings)
|
59 |
+
average = sum(ratings) / len(ratings)
|
60 |
+
|
61 |
+
# Format results
|
62 |
+
results = {
|
63 |
+
"GRU Model": f"Predicted Rating: {gru_rating} (Probabilities: {gru_probs})",
|
64 |
+
"LSTM Model": f"Predicted Rating: {lstm_rating} (Probabilities: {lstm_probs})",
|
65 |
+
"BiLSTM Model": f"Predicted Rating: {bilstm_rating} (Probabilities: {bilstm_probs})",
|
66 |
+
"Statistics": f"Lowest: {lowest}, Highest: {highest}, Average: {average:.2f}"
|
67 |
+
}
|
68 |
+
except Exception as e:
|
69 |
+
print(f"Error during prediction: {e}") # Debugging: Print the error
|
70 |
+
results = {
|
71 |
+
"GRU Model": "Error",
|
72 |
+
"LSTM Model": "Error",
|
73 |
+
"BiLSTM Model": "Error",
|
74 |
+
"Statistics": "Error"
|
75 |
+
}
|
76 |
+
|
77 |
return results
|
78 |
|
79 |
+
# Gradio interface
|
80 |
def create_interface():
|
81 |
with gr.Blocks() as demo:
|
82 |
gr.Markdown("# Sentiment Analysis App")
|
83 |
gr.Markdown("Predict the sentiment of your text review using RNN-based models.")
|
84 |
+
|
85 |
with gr.Row():
|
86 |
text_input = gr.Textbox(label="Enter your text here:", placeholder="Type your review here...")
|
87 |
+
|
88 |
with gr.Row():
|
89 |
gr.Markdown("### Predicted Sentiment")
|
90 |
gru_output = gr.Textbox(label="GRU Model")
|
91 |
lstm_output = gr.Textbox(label="LSTM Model")
|
92 |
bilstm_output = gr.Textbox(label="BiLSTM Model")
|
93 |
+
|
94 |
with gr.Row():
|
95 |
gr.Markdown("### Statistics")
|
96 |
stats_output = gr.Textbox(label="Lowest, Highest, Average")
|
97 |
+
|
98 |
+
# Button to predict
|
99 |
predict_button = gr.Button("Predict Sentiment")
|
100 |
+
|
101 |
+
# Event handler for the predict button
|
102 |
predict_button.click(
|
103 |
fn=predict_all_models,
|
104 |
inputs=text_input,
|
105 |
outputs=[gru_output, lstm_output, bilstm_output, stats_output]
|
106 |
)
|
107 |
+
|
108 |
return demo
|
109 |
|
110 |
+
# Launch the app
|
111 |
if __name__ == "__main__":
|
112 |
demo = create_interface()
|
113 |
demo.launch()
|