Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,94 +4,81 @@ from tensorflow.keras.models import load_model
|
|
4 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
import pickle
|
6 |
|
7 |
-
|
8 |
gru_model = load_model("best_GRU_tuning_model.h5")
|
9 |
lstm_model = load_model("lstm_model.h5")
|
10 |
bilstm_model = load_model("bilstm_model.h5")
|
11 |
|
12 |
-
|
13 |
with open("my_tokenizer.pkl", "rb") as f:
|
14 |
tokenizer = pickle.load(f)
|
15 |
|
16 |
-
|
17 |
def preprocess_text(text):
|
18 |
text = text.lower()
|
19 |
text = re.sub(r'[^a-zA-Z\s]', '', text).strip()
|
20 |
return text
|
21 |
|
22 |
-
|
23 |
def predict_sentiment(model, text):
|
24 |
cleaned = preprocess_text(text)
|
25 |
seq = tokenizer.texts_to_sequences([cleaned])
|
26 |
padded_seq = pad_sequences(seq, maxlen=200)
|
27 |
probs = model.predict(padded_seq)
|
28 |
predicted_class = np.argmax(probs, axis=1)[0]
|
29 |
-
rating = predicted_class + 1
|
30 |
return rating, probs[0]
|
31 |
|
32 |
-
|
33 |
def predict_all_models(text):
|
34 |
-
# Predict with GRU
|
35 |
gru_rating, gru_probs = predict_sentiment(gru_model, text)
|
36 |
-
# Predict with LSTM
|
37 |
lstm_rating, lstm_probs = predict_sentiment(lstm_model, text)
|
38 |
-
# Predict with BiLSTM
|
39 |
bilstm_rating, bilstm_probs = predict_sentiment(bilstm_model, text)
|
40 |
-
|
41 |
-
# Calculate statistics
|
42 |
ratings = [gru_rating, lstm_rating, bilstm_rating]
|
43 |
lowest = min(ratings)
|
44 |
highest = max(ratings)
|
45 |
average = sum(ratings) / len(ratings)
|
46 |
-
|
47 |
-
# Format results
|
48 |
results = {
|
49 |
"GRU Model": f"Predicted Rating: {gru_rating} (Probabilities: {gru_probs})",
|
50 |
"LSTM Model": f"Predicted Rating: {lstm_rating} (Probabilities: {lstm_probs})",
|
51 |
"BiLSTM Model": f"Predicted Rating: {bilstm_rating} (Probabilities: {bilstm_probs})",
|
52 |
"Statistics": f"Lowest: {lowest}, Highest: {highest}, Average: {average:.2f}"
|
53 |
}
|
54 |
-
|
55 |
return results
|
56 |
|
57 |
-
|
58 |
def create_interface():
|
59 |
with gr.Blocks() as demo:
|
60 |
gr.Markdown("# Sentiment Analysis App")
|
61 |
gr.Markdown("Predict the sentiment of your text review using RNN-based models.")
|
62 |
-
|
63 |
with gr.Row():
|
64 |
text_input = gr.Textbox(label="Enter your text here:", placeholder="Type your review here...")
|
65 |
-
|
66 |
with gr.Row():
|
67 |
gr.Markdown("### Predicted Sentiment")
|
68 |
gru_output = gr.Textbox(label="GRU Model")
|
69 |
lstm_output = gr.Textbox(label="LSTM Model")
|
70 |
bilstm_output = gr.Textbox(label="BiLSTM Model")
|
71 |
-
|
72 |
with gr.Row():
|
73 |
gr.Markdown("### Statistics")
|
74 |
stats_output = gr.Textbox(label="Lowest, Highest, Average")
|
75 |
-
|
76 |
-
# Button to predict
|
77 |
predict_button = gr.Button("Predict Sentiment")
|
78 |
-
|
79 |
-
# Event handlers
|
80 |
predict_button.click(
|
81 |
fn=predict_all_models,
|
82 |
inputs=text_input,
|
83 |
outputs=[gru_output, lstm_output, bilstm_output, stats_output]
|
84 |
)
|
85 |
-
|
86 |
-
sample_review.change(
|
87 |
-
fn=lambda x: x,
|
88 |
-
inputs=sample_review,
|
89 |
-
outputs=text_input
|
90 |
-
)
|
91 |
-
|
92 |
return demo
|
93 |
|
94 |
-
|
95 |
if __name__ == "__main__":
|
96 |
demo = create_interface()
|
97 |
demo.launch()
|
|
|
4 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
import pickle
|
6 |
|
7 |
+
|
8 |
gru_model = load_model("best_GRU_tuning_model.h5")
|
9 |
lstm_model = load_model("lstm_model.h5")
|
10 |
bilstm_model = load_model("bilstm_model.h5")
|
11 |
|
12 |
+
|
13 |
with open("my_tokenizer.pkl", "rb") as f:
|
14 |
tokenizer = pickle.load(f)
|
15 |
|
16 |
+
|
17 |
def preprocess_text(text):
|
18 |
text = text.lower()
|
19 |
text = re.sub(r'[^a-zA-Z\s]', '', text).strip()
|
20 |
return text
|
21 |
|
22 |
+
|
23 |
def predict_sentiment(model, text):
|
24 |
cleaned = preprocess_text(text)
|
25 |
seq = tokenizer.texts_to_sequences([cleaned])
|
26 |
padded_seq = pad_sequences(seq, maxlen=200)
|
27 |
probs = model.predict(padded_seq)
|
28 |
predicted_class = np.argmax(probs, axis=1)[0]
|
29 |
+
rating = predicted_class + 1
|
30 |
return rating, probs[0]
|
31 |
|
32 |
+
|
33 |
def predict_all_models(text):
|
|
|
34 |
gru_rating, gru_probs = predict_sentiment(gru_model, text)
|
|
|
35 |
lstm_rating, lstm_probs = predict_sentiment(lstm_model, text)
|
|
|
36 |
bilstm_rating, bilstm_probs = predict_sentiment(bilstm_model, text)
|
37 |
+
|
|
|
38 |
ratings = [gru_rating, lstm_rating, bilstm_rating]
|
39 |
lowest = min(ratings)
|
40 |
highest = max(ratings)
|
41 |
average = sum(ratings) / len(ratings)
|
42 |
+
|
|
|
43 |
results = {
|
44 |
"GRU Model": f"Predicted Rating: {gru_rating} (Probabilities: {gru_probs})",
|
45 |
"LSTM Model": f"Predicted Rating: {lstm_rating} (Probabilities: {lstm_probs})",
|
46 |
"BiLSTM Model": f"Predicted Rating: {bilstm_rating} (Probabilities: {bilstm_probs})",
|
47 |
"Statistics": f"Lowest: {lowest}, Highest: {highest}, Average: {average:.2f}"
|
48 |
}
|
49 |
+
|
50 |
return results
|
51 |
|
52 |
+
|
53 |
def create_interface():
|
54 |
with gr.Blocks() as demo:
|
55 |
gr.Markdown("# Sentiment Analysis App")
|
56 |
gr.Markdown("Predict the sentiment of your text review using RNN-based models.")
|
57 |
+
|
58 |
with gr.Row():
|
59 |
text_input = gr.Textbox(label="Enter your text here:", placeholder="Type your review here...")
|
60 |
+
|
61 |
with gr.Row():
|
62 |
gr.Markdown("### Predicted Sentiment")
|
63 |
gru_output = gr.Textbox(label="GRU Model")
|
64 |
lstm_output = gr.Textbox(label="LSTM Model")
|
65 |
bilstm_output = gr.Textbox(label="BiLSTM Model")
|
66 |
+
|
67 |
with gr.Row():
|
68 |
gr.Markdown("### Statistics")
|
69 |
stats_output = gr.Textbox(label="Lowest, Highest, Average")
|
70 |
+
|
|
|
71 |
predict_button = gr.Button("Predict Sentiment")
|
72 |
+
|
|
|
73 |
predict_button.click(
|
74 |
fn=predict_all_models,
|
75 |
inputs=text_input,
|
76 |
outputs=[gru_output, lstm_output, bilstm_output, stats_output]
|
77 |
)
|
78 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
return demo
|
80 |
|
81 |
+
|
82 |
if __name__ == "__main__":
|
83 |
demo = create_interface()
|
84 |
demo.launch()
|