Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -30,12 +30,17 @@ class AnomalyDetectionAgent:
|
|
30 |
anomalies = iso_forest.fit_predict(data_scaled)
|
31 |
return anomalies == -1
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
plt.
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
class FeatureExtractionAgent:
|
41 |
def extract(self, data):
|
@@ -103,8 +108,13 @@ def analyze_time_series(data, forecast_steps):
|
|
103 |
|
104 |
trend_plot = plot_data(trend, "Trend")
|
105 |
seasonality_plot = plot_data(seasonality, "Seasonality")
|
106 |
-
anomalies_plot = plot_data(data
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
return (
|
110 |
trend_plot,
|
@@ -120,10 +130,12 @@ def analyze_time_series(data, forecast_steps):
|
|
120 |
logging.error(error_msg)
|
121 |
return (None, None, None, None, None, "", error_msg)
|
122 |
|
|
|
|
|
123 |
iface = gr.Interface(
|
124 |
fn=analyze_time_series,
|
125 |
inputs=[
|
126 |
-
gr.Textbox(label="Enter comma-separated time series data"),
|
127 |
gr.Number(label="Number of steps to forecast", value=5)
|
128 |
],
|
129 |
outputs=[
|
@@ -133,7 +145,7 @@ iface = gr.Interface(
|
|
133 |
gr.JSON(label="Features"),
|
134 |
gr.Plot(label="Forecast"),
|
135 |
gr.Textbox(label="Insight"),
|
136 |
-
gr.Textbox(label="Error")
|
137 |
],
|
138 |
title="Agentic RAG Time Series Analysis",
|
139 |
description="Enter a comma-separated list of numbers representing your time series data, and specify the number of steps to forecast."
|
|
|
30 |
anomalies = iso_forest.fit_predict(data_scaled)
|
31 |
return anomalies == -1
|
32 |
|
33 |
+
|
34 |
+
def plot_data(data, title, anomalies=None):
|
35 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
36 |
+
ax.plot(data, label='Data')
|
37 |
+
if anomalies is not None:
|
38 |
+
anomaly_indices = np.where(anomalies)[0]
|
39 |
+
ax.scatter(anomaly_indices, data[anomaly_indices], color='red', label='Anomalies')
|
40 |
+
ax.set_title(title)
|
41 |
+
ax.legend()
|
42 |
+
plt.close(fig)
|
43 |
+
return fig
|
44 |
|
45 |
class FeatureExtractionAgent:
|
46 |
def extract(self, data):
|
|
|
108 |
|
109 |
trend_plot = plot_data(trend, "Trend")
|
110 |
seasonality_plot = plot_data(seasonality, "Seasonality")
|
111 |
+
anomalies_plot = plot_data(data, "Anomalies", anomalies)
|
112 |
+
|
113 |
+
full_data = np.concatenate([data, forecast])
|
114 |
+
forecast_plot = plot_data(full_data, "Forecast")
|
115 |
+
ax = forecast_plot.axes[0]
|
116 |
+
ax.axvline(x=len(data) - 1, color='r', linestyle='--', label='Forecast Start')
|
117 |
+
ax.legend()
|
118 |
|
119 |
return (
|
120 |
trend_plot,
|
|
|
130 |
logging.error(error_msg)
|
131 |
return (None, None, None, None, None, "", error_msg)
|
132 |
|
133 |
+
example_input = "120,125,130,140,135,145,150,160,155,165,170,180,175,185,190,200,195,205,210,220,215,225,230,240,235,245,250,260,255,265,270,280,275,285,290,300,295,305,310,320,315,325,330,340,335,345,350,360,355,365,370,380,375,385,390,400,395,405,410,420"
|
134 |
+
|
135 |
iface = gr.Interface(
|
136 |
fn=analyze_time_series,
|
137 |
inputs=[
|
138 |
+
gr.Textbox(label="Enter comma-separated time series data", value=example_input),
|
139 |
gr.Number(label="Number of steps to forecast", value=5)
|
140 |
],
|
141 |
outputs=[
|
|
|
145 |
gr.JSON(label="Features"),
|
146 |
gr.Plot(label="Forecast"),
|
147 |
gr.Textbox(label="Insight"),
|
148 |
+
gr.Textbox(label="Error", visible=False)
|
149 |
],
|
150 |
title="Agentic RAG Time Series Analysis",
|
151 |
description="Enter a comma-separated list of numbers representing your time series data, and specify the number of steps to forecast."
|