arjunanand13's picture
Update app.py
109898e verified
import gradio as gr
import spaces
import torch
import transformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
pipeline = transformers.pipeline(
"text-generation",
model=model_name,
model_kwargs={"torch_dtype": torch.bfloat16},
device="cpu",
)
def chat_function(message, history, system_prompt, max_new_tokens, temperature):
messages = []
# Check if history is None or empty and handle accordingly
if history:
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
# Always add the current user message
messages.append({"role": "user", "content": message})
# Construct the prompt using the pipeline's tokenizer
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Generate the response
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("")
]
# Adjust the temperature slightly above given to ensure variety
adjusted_temp = temperature + 0.1
# Generate outputs with adjusted parameters
outputs = pipeline(
prompt,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=adjusted_temp,
top_p=0.9
)
# Extract the generated text, skipping the length of the prompt
generated_text = outputs[0]["generated_text"]
return generated_text[len(prompt):] # Return the new part of the conversation
# Update Gradio interface setup
gr.Interface(
fn=chat_function,
inputs=[
gr.Textbox(placeholder="Enter your message here", label="Your Message"),
gr.JSON(label="Conversation History (format as [[user, assistant], ...])"), # Without optional
gr.Textbox(label="System Prompt"),
gr.Slider(512, 4096, label="Max New Tokens"),
gr.Slider(0.0, 1.0, step=0.1, label="Temperature")
],
outputs=gr.Textbox(label="AI Response")
).launch()
# def chat_function(message, history, system_prompt,max_new_tokens,temperature):
# messages = [
# {"role": "system", "content": system_prompt},
# {"role": "user", "content": message},
# ]
# prompt = pipeline.tokenizer.apply_chat_template(
# messages,
# tokenize=False,
# add_generation_prompt=True
# )
# terminators = [
# pipeline.tokenizer.eos_token_id,
# pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
# ]
# temp = temperature + 0.1
# outputs = pipeline(
# prompt,
# max_new_tokens=max_new_tokens,
# eos_token_id=terminators,
# do_sample=True,
# temperature=temp,
# top_p=0.9,
# )
# return outputs[0]["generated_text"][len(prompt):]
# gr.ChatInterface(
# chat_function,
# chatbot=gr.Chatbot(height=400),
# textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7),
# title="Meta-Llama-3-8B-Instruct",
# description="""
# To Learn about Fine-tuning Llama-3-8B, Ckeck https://exnrt.com/blog/ai/finetune-llama3-8b/.
# """,
# additional_inputs=[
# gr.Textbox("You are helpful AI.", label="System Prompt"),
# gr.Slider(512, 4096, label="Max New Tokens"),
# gr.Slider(0, 1, label="Temperature")
# ]
# ).launch()
#The Code
# import gradio as gr
# import os
# import spaces
# from transformers import GemmaTokenizer, AutoModelForCausalLM
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# from threading import Thread
# # Set an environment variable
# HF_TOKEN = os.environ.get("HF_TOKEN", None)
# DESCRIPTION = '''
# <div>
# <h1 style="text-align: center;">Meta Llama3 8B</h1>
# <p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
# <p>🔎 For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co/blog/llama3">at our blog post</a>.</p>
# <p>🦕 Looking for an even more powerful model? Check out the <a href="https://huggingface.co/chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
# </div>
# '''
# LICENSE = """
# <p/>
# ---
# Built with Meta Llama 3
# """
# PLACEHOLDER = """
# <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
# <img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
# <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
# <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
# </div>
# """
# css = """
# h1 {
# text-align: center;
# display: block;
# }
# #duplicate-button {
# margin: auto;
# color: white;
# background: #1565c0;
# border-radius: 100vh;
# }
# """
# # Load the tokenizer and model
# tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
# model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto") # to("cuda:0")
# terminators = [
# tokenizer.eos_token_id,
# tokenizer.convert_tokens_to_ids("<|eot_id|>")
# ]
# @spaces.GPU(duration=120)
# def chat_llama3_8b(message: str,
# history: list,
# temperature: float,
# max_new_tokens: int
# ) -> str:
# """
# Generate a streaming response using the llama3-8b model.
# Args:
# message (str): The input message.
# history (list): The conversation history used by ChatInterface.
# temperature (float): The temperature for generating the response.
# max_new_tokens (int): The maximum number of new tokens to generate.
# Returns:
# str: The generated response.
# """
# conversation = []
# for user, assistant in history:
# conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
# conversation.append({"role": "user", "content": message})
# input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
# streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
# generate_kwargs = dict(
# input_ids= input_ids,
# streamer=streamer,
# max_new_tokens=max_new_tokens,
# do_sample=True,
# temperature=temperature,
# eos_token_id=terminators,
# )
# # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
# if temperature == 0:
# generate_kwargs['do_sample'] = False
# t = Thread(target=model.generate, kwargs=generate_kwargs)
# t.start()
# outputs = []
# for text in streamer:
# outputs.append(text)
# print(outputs)
# yield "".join(outputs)
# # Gradio block
# chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
# with gr.Blocks(fill_height=True, css=css) as demo:
# gr.Markdown(DESCRIPTION)
# gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
# gr.ChatInterface(
# fn=chat_llama3_8b,
# chatbot=chatbot,
# fill_height=True,
# additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
# additional_inputs=[
# gr.Slider(minimum=0,
# maximum=1,
# step=0.1,
# value=0.95,
# label="Temperature",
# render=False),
# gr.Slider(minimum=128,
# maximum=4096,
# step=1,
# value=512,
# label="Max new tokens",
# render=False ),
# ],
# examples=[
# ['How to setup a human base on Mars? Give short answer.'],
# ['Explain theory of relativity to me like I’m 8 years old.'],
# ['What is 9,000 * 9,000?'],
# ['Write a pun-filled happy birthday message to my friend Alex.']
# ],
# cache_examples=False,
# )
# gr.Markdown(LICENSE)
# if __name__ == "__main__":
# demo.launch()