arjunanand13 commited on
Commit
a159605
·
verified ·
1 Parent(s): 280a0d8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +189 -129
app.py CHANGED
@@ -1,142 +1,202 @@
1
  import gradio as gr
2
- import os
3
  import spaces
4
- from transformers import GemmaTokenizer, AutoModelForCausalLM
5
- from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
6
- from threading import Thread
7
-
8
- # Set an environment variable
9
- HF_TOKEN = os.environ.get("HF_TOKEN", None)
10
-
11
-
12
- DESCRIPTION = '''
13
- <div>
14
- <h1 style="text-align: center;">Meta Llama3 8B</h1>
15
- <p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
16
- <p>🔎 For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co/blog/llama3">at our blog post</a>.</p>
17
- <p>🦕 Looking for an even more powerful model? Check out the <a href="https://huggingface.co/chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
18
- </div>
19
- '''
20
-
21
- LICENSE = """
22
- <p/>
23
- ---
24
- Built with Meta Llama 3
25
- """
26
-
27
- PLACEHOLDER = """
28
- <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
29
- <img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
30
- <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
31
- <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
32
- </div>
33
- """
34
-
35
-
36
- css = """
37
- h1 {
38
- text-align: center;
39
- display: block;
40
- }
41
- #duplicate-button {
42
- margin: auto;
43
- color: white;
44
- background: #1565c0;
45
- border-radius: 100vh;
46
- }
47
- """
48
-
49
- # Load the tokenizer and model
50
- tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
51
- model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto") # to("cuda:0")
52
- terminators = [
53
- tokenizer.eos_token_id,
54
- tokenizer.convert_tokens_to_ids("<|eot_id|>")
55
- ]
56
-
57
- @spaces.GPU(duration=120)
58
- def chat_llama3_8b(message: str,
59
- history: list,
60
- temperature: float,
61
- max_new_tokens: int
62
- ) -> str:
63
- """
64
- Generate a streaming response using the llama3-8b model.
65
- Args:
66
- message (str): The input message.
67
- history (list): The conversation history used by ChatInterface.
68
- temperature (float): The temperature for generating the response.
69
- max_new_tokens (int): The maximum number of new tokens to generate.
70
- Returns:
71
- str: The generated response.
72
- """
73
- conversation = []
74
- for user, assistant in history:
75
- conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
76
- conversation.append({"role": "user", "content": message})
77
-
78
- input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
79
-
80
- streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
81
 
82
- generate_kwargs = dict(
83
- input_ids= input_ids,
84
- streamer=streamer,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  max_new_tokens=max_new_tokens,
86
- do_sample=True,
87
- temperature=temperature,
88
  eos_token_id=terminators,
 
 
 
89
  )
90
- # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
91
- if temperature == 0:
92
- generate_kwargs['do_sample'] = False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
- t = Thread(target=model.generate, kwargs=generate_kwargs)
95
- t.start()
96
-
97
- outputs = []
98
- for text in streamer:
99
- outputs.append(text)
100
- print(outputs)
101
- yield "".join(outputs)
102
 
103
 
104
- # Gradio block
105
- chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
106
 
107
- with gr.Blocks(fill_height=True, css=css) as demo:
108
 
109
- gr.Markdown(DESCRIPTION)
110
- gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
111
- gr.ChatInterface(
112
- fn=chat_llama3_8b,
113
- chatbot=chatbot,
114
- fill_height=True,
115
- additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
116
- additional_inputs=[
117
- gr.Slider(minimum=0,
118
- maximum=1,
119
- step=0.1,
120
- value=0.95,
121
- label="Temperature",
122
- render=False),
123
- gr.Slider(minimum=128,
124
- maximum=4096,
125
- step=1,
126
- value=512,
127
- label="Max new tokens",
128
- render=False ),
129
- ],
130
- examples=[
131
- ['How to setup a human base on Mars? Give short answer.'],
132
- ['Explain theory of relativity to me like I’m 8 years old.'],
133
- ['What is 9,000 * 9,000?'],
134
- ['Write a pun-filled happy birthday message to my friend Alex.']
135
- ],
136
- cache_examples=False,
137
- )
138
 
139
- gr.Markdown(LICENSE)
140
 
141
- if __name__ == "__main__":
142
- demo.launch()
 
1
  import gradio as gr
 
2
  import spaces
3
+ import torch
4
+
5
+ import transformers
6
+ import torch
7
+ from transformers import AutoModelForCausalLM, AutoTokenizer
8
+
9
+ model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ pipeline = transformers.pipeline(
12
+ "text-generation",
13
+ model=model_name,
14
+ model_kwargs={"torch_dtype": torch.bfloat16},
15
+ device="cpu",
16
+ )
17
+
18
+ def chat_function(message, history, system_prompt,max_new_tokens,temperature):
19
+ messages = [
20
+ {"role": "system", "content": system_prompt},
21
+ {"role": "user", "content": message},
22
+ ]
23
+ prompt = pipeline.tokenizer.apply_chat_template(
24
+ messages,
25
+ tokenize=False,
26
+ add_generation_prompt=True
27
+ )
28
+ terminators = [
29
+ pipeline.tokenizer.eos_token_id,
30
+ pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
31
+ ]
32
+ temp = temperature + 0.1
33
+ outputs = pipeline(
34
+ prompt,
35
  max_new_tokens=max_new_tokens,
 
 
36
  eos_token_id=terminators,
37
+ do_sample=True,
38
+ temperature=temp,
39
+ top_p=0.9,
40
  )
41
+ return outputs[0]["generated_text"][len(prompt):]
42
+
43
+ gr.ChatInterface(
44
+ chat_function,
45
+ chatbot=gr.Chatbot(height=400),
46
+ textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7),
47
+ title="Meta-Llama-3-8B-Instruct",
48
+ description="""
49
+ To Learn about Fine-tuning Llama-3-8B, Ckeck https://exnrt.com/blog/ai/finetune-llama3-8b/.
50
+ """,
51
+ additional_inputs=[
52
+ gr.Textbox("You are helpful AI.", label="System Prompt"),
53
+ gr.Slider(512, 4096, label="Max New Tokens"),
54
+ gr.Slider(0, 1, label="Temperature")
55
+ ]
56
+ ).launch()
57
+
58
+
59
+ #The Code
60
+
61
+ # import gradio as gr
62
+ # import os
63
+ # import spaces
64
+ # from transformers import GemmaTokenizer, AutoModelForCausalLM
65
+ # from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
66
+ # from threading import Thread
67
+
68
+ # # Set an environment variable
69
+ # HF_TOKEN = os.environ.get("HF_TOKEN", None)
70
+
71
+
72
+ # DESCRIPTION = '''
73
+ # <div>
74
+ # <h1 style="text-align: center;">Meta Llama3 8B</h1>
75
+ # <p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
76
+ # <p>🔎 For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co/blog/llama3">at our blog post</a>.</p>
77
+ # <p>🦕 Looking for an even more powerful model? Check out the <a href="https://huggingface.co/chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
78
+ # </div>
79
+ # '''
80
+
81
+ # LICENSE = """
82
+ # <p/>
83
+ # ---
84
+ # Built with Meta Llama 3
85
+ # """
86
+
87
+ # PLACEHOLDER = """
88
+ # <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
89
+ # <img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
90
+ # <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
91
+ # <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
92
+ # </div>
93
+ # """
94
+
95
+
96
+ # css = """
97
+ # h1 {
98
+ # text-align: center;
99
+ # display: block;
100
+ # }
101
+ # #duplicate-button {
102
+ # margin: auto;
103
+ # color: white;
104
+ # background: #1565c0;
105
+ # border-radius: 100vh;
106
+ # }
107
+ # """
108
+
109
+ # # Load the tokenizer and model
110
+ # tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
111
+ # model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto") # to("cuda:0")
112
+ # terminators = [
113
+ # tokenizer.eos_token_id,
114
+ # tokenizer.convert_tokens_to_ids("<|eot_id|>")
115
+ # ]
116
+
117
+ # @spaces.GPU(duration=120)
118
+ # def chat_llama3_8b(message: str,
119
+ # history: list,
120
+ # temperature: float,
121
+ # max_new_tokens: int
122
+ # ) -> str:
123
+ # """
124
+ # Generate a streaming response using the llama3-8b model.
125
+ # Args:
126
+ # message (str): The input message.
127
+ # history (list): The conversation history used by ChatInterface.
128
+ # temperature (float): The temperature for generating the response.
129
+ # max_new_tokens (int): The maximum number of new tokens to generate.
130
+ # Returns:
131
+ # str: The generated response.
132
+ # """
133
+ # conversation = []
134
+ # for user, assistant in history:
135
+ # conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
136
+ # conversation.append({"role": "user", "content": message})
137
+
138
+ # input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
139
+
140
+ # streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
141
+
142
+ # generate_kwargs = dict(
143
+ # input_ids= input_ids,
144
+ # streamer=streamer,
145
+ # max_new_tokens=max_new_tokens,
146
+ # do_sample=True,
147
+ # temperature=temperature,
148
+ # eos_token_id=terminators,
149
+ # )
150
+ # # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
151
+ # if temperature == 0:
152
+ # generate_kwargs['do_sample'] = False
153
 
154
+ # t = Thread(target=model.generate, kwargs=generate_kwargs)
155
+ # t.start()
156
+
157
+ # outputs = []
158
+ # for text in streamer:
159
+ # outputs.append(text)
160
+ # print(outputs)
161
+ # yield "".join(outputs)
162
 
163
 
164
+ # # Gradio block
165
+ # chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
166
 
167
+ # with gr.Blocks(fill_height=True, css=css) as demo:
168
 
169
+ # gr.Markdown(DESCRIPTION)
170
+ # gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
171
+ # gr.ChatInterface(
172
+ # fn=chat_llama3_8b,
173
+ # chatbot=chatbot,
174
+ # fill_height=True,
175
+ # additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
176
+ # additional_inputs=[
177
+ # gr.Slider(minimum=0,
178
+ # maximum=1,
179
+ # step=0.1,
180
+ # value=0.95,
181
+ # label="Temperature",
182
+ # render=False),
183
+ # gr.Slider(minimum=128,
184
+ # maximum=4096,
185
+ # step=1,
186
+ # value=512,
187
+ # label="Max new tokens",
188
+ # render=False ),
189
+ # ],
190
+ # examples=[
191
+ # ['How to setup a human base on Mars? Give short answer.'],
192
+ # ['Explain theory of relativity to me like I’m 8 years old.'],
193
+ # ['What is 9,000 * 9,000?'],
194
+ # ['Write a pun-filled happy birthday message to my friend Alex.']
195
+ # ],
196
+ # cache_examples=False,
197
+ # )
198
 
199
+ # gr.Markdown(LICENSE)
200
 
201
+ # if __name__ == "__main__":
202
+ # demo.launch()