llama_4bit / app.py
arjunanand13's picture
Update app.py
96ffa43 verified
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig
import os
token = os.getenv("HUGGINGFACE_TOKEN")
def load_quantized_model():
""" Function to load a quantized model"""
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct",token=token)
config = BitsAndBytesConfig.from_dict({"load_in_4bit": True})
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B-Instruct", quantization_config=config,token=token)
return model, tokenizer
model, tokenizer = load_quantized_model()
def generate_response(prompt):
"""Simple prediction function for Gradio"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
iface = gr.Interface(
fn=generate_response,
inputs="text",
outputs="text",
title="Quantized Model Chatbot"
)
iface.launch()