arjunanand13 commited on
Commit
ced524d
·
verified ·
1 Parent(s): 0336743

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -0
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+ from transformers import BitsAndBytesConfig
5
+
6
+ # Function to load a quantized model
7
+ def load_quantized_model():
8
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
9
+ config = BitsAndBytesConfig.from_dict({"load_in_4bit": True})
10
+ model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B-Instruct", quantization_config=config)
11
+ return model, tokenizer
12
+
13
+ model, tokenizer = load_quantized_model()
14
+
15
+ # Simple prediction function for Gradio
16
+ def generate_response(prompt):
17
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
18
+ outputs = model.generate(**inputs)
19
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
20
+
21
+ # Gradio interface
22
+ iface = gr.Interface(
23
+ fn=generate_response,
24
+ inputs="text",
25
+ outputs="text",
26
+ title="Quantized Model Chatbot"
27
+ )
28
+
29
+ iface.launch()