Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,575 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import re
|
3 |
+
import hashlib
|
4 |
+
import os
|
5 |
+
from typing import Dict, Any, List, Optional, Tuple, Union
|
6 |
+
from dataclasses import dataclass, field
|
7 |
+
import asyncio
|
8 |
+
import logging
|
9 |
+
from datetime import datetime
|
10 |
+
import openai
|
11 |
+
from openai import AsyncOpenAI
|
12 |
+
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class ComplexityMetrics:
|
18 |
+
max_depth: int
|
19 |
+
total_fields: int
|
20 |
+
enum_count: int
|
21 |
+
required_fields: int
|
22 |
+
nested_objects: int
|
23 |
+
|
24 |
+
@property
|
25 |
+
def complexity_tier(self) -> int:
|
26 |
+
if self.max_depth <= 2 and self.total_fields <= 20:
|
27 |
+
return 1
|
28 |
+
elif self.max_depth <= 4 and self.total_fields <= 100:
|
29 |
+
return 2
|
30 |
+
else:
|
31 |
+
return 3
|
32 |
+
|
33 |
+
@dataclass
|
34 |
+
class ExtractionStage:
|
35 |
+
name: str
|
36 |
+
fields: List[str]
|
37 |
+
schema_subset: Dict[str, Any]
|
38 |
+
complexity: int
|
39 |
+
dependencies: List[str] = field(default_factory=list)
|
40 |
+
estimated_tokens: int = 0
|
41 |
+
|
42 |
+
@dataclass
|
43 |
+
class ExtractionPlan:
|
44 |
+
stages: List[ExtractionStage]
|
45 |
+
estimated_cost: float
|
46 |
+
estimated_time: float
|
47 |
+
model_assignments: Dict[str, str]
|
48 |
+
parallelizable_stages: List[str] = field(default_factory=list)
|
49 |
+
|
50 |
+
@dataclass
|
51 |
+
class ExtractionResult:
|
52 |
+
data: Dict[str, Any]
|
53 |
+
confidence_scores: Dict[str, float]
|
54 |
+
stage_results: List[Dict[str, Any]] = field(default_factory=list)
|
55 |
+
metadata: Dict[str, Any] = field(default_factory=dict)
|
56 |
+
processing_time: float = 0.0
|
57 |
+
|
58 |
+
@dataclass
|
59 |
+
class QualityReport:
|
60 |
+
overall_confidence: float
|
61 |
+
field_scores: Dict[str, float]
|
62 |
+
review_flags: List[str]
|
63 |
+
schema_compliance: float
|
64 |
+
consistency_score: float
|
65 |
+
recommended_review_time: int = 0
|
66 |
+
|
67 |
+
class OpenAIClient:
|
68 |
+
def __init__(self, model_name: str, api_key: str):
|
69 |
+
self.model_name = model_name
|
70 |
+
self.client = AsyncOpenAI(api_key=api_key)
|
71 |
+
self.cost_per_token = {
|
72 |
+
"gpt-4o-mini": 0.00015,
|
73 |
+
"gpt-4o": 0.005,
|
74 |
+
"gpt-4-turbo": 0.003
|
75 |
+
}
|
76 |
+
|
77 |
+
async def complete(self, prompt: str, max_tokens: int = 4000) -> Tuple[str, float]:
|
78 |
+
try:
|
79 |
+
response = await self.client.chat.completions.create(
|
80 |
+
model=self.model_name,
|
81 |
+
messages=[{"role": "user", "content": prompt}],
|
82 |
+
max_tokens=max_tokens,
|
83 |
+
temperature=0.1
|
84 |
+
)
|
85 |
+
|
86 |
+
content = response.choices[0].message.content
|
87 |
+
confidence = 0.92 if "gpt-4o" in self.model_name else 0.85
|
88 |
+
|
89 |
+
return content, confidence
|
90 |
+
except Exception as e:
|
91 |
+
logger.error(f"OpenAI API error: {e}")
|
92 |
+
return '{"error": "API call failed"}', 0.1
|
93 |
+
|
94 |
+
class SchemaAnalyzer:
|
95 |
+
def analyze_complexity(self, schema: Dict[str, Any]) -> ComplexityMetrics:
|
96 |
+
def count_depth(obj: Any, current_depth: int = 0) -> int:
|
97 |
+
if not isinstance(obj, dict):
|
98 |
+
return current_depth
|
99 |
+
|
100 |
+
max_child_depth = current_depth
|
101 |
+
for value in obj.values():
|
102 |
+
if isinstance(value, dict):
|
103 |
+
if 'properties' in value:
|
104 |
+
child_depth = count_depth(value['properties'], current_depth + 1)
|
105 |
+
else:
|
106 |
+
child_depth = count_depth(value, current_depth + 1)
|
107 |
+
max_child_depth = max(max_child_depth, child_depth)
|
108 |
+
return max_child_depth
|
109 |
+
|
110 |
+
def count_fields(obj: Any) -> Tuple[int, int, int]:
|
111 |
+
if not isinstance(obj, dict):
|
112 |
+
return 0, 0, 0
|
113 |
+
|
114 |
+
total, enums, objects = 0, 0, 0
|
115 |
+
|
116 |
+
for key, value in obj.items():
|
117 |
+
if key == 'properties' and isinstance(value, dict):
|
118 |
+
for prop_name, prop_def in value.items():
|
119 |
+
total += 1
|
120 |
+
if isinstance(prop_def, dict):
|
121 |
+
if 'enum' in prop_def:
|
122 |
+
enums += 1
|
123 |
+
if prop_def.get('type') == 'object':
|
124 |
+
objects += 1
|
125 |
+
nested_total, nested_enums, nested_objects = count_fields(prop_def)
|
126 |
+
total += nested_total
|
127 |
+
enums += nested_enums
|
128 |
+
objects += nested_objects
|
129 |
+
elif isinstance(value, dict):
|
130 |
+
nested_total, nested_enums, nested_objects = count_fields(value)
|
131 |
+
total += nested_total
|
132 |
+
enums += nested_enums
|
133 |
+
objects += nested_objects
|
134 |
+
|
135 |
+
return total, enums, objects
|
136 |
+
|
137 |
+
max_depth = count_depth(schema.get('properties', {}))
|
138 |
+
total_fields, enum_count, nested_objects = count_fields(schema)
|
139 |
+
required_fields = len(schema.get('required', []))
|
140 |
+
|
141 |
+
return ComplexityMetrics(
|
142 |
+
max_depth=max_depth,
|
143 |
+
total_fields=total_fields,
|
144 |
+
enum_count=enum_count,
|
145 |
+
required_fields=required_fields,
|
146 |
+
nested_objects=nested_objects
|
147 |
+
)
|
148 |
+
|
149 |
+
def create_extraction_plan(self, schema: Dict[str, Any], complexity: ComplexityMetrics) -> ExtractionPlan:
|
150 |
+
if complexity.complexity_tier == 1:
|
151 |
+
return self._create_simple_plan(schema)
|
152 |
+
elif complexity.complexity_tier == 2:
|
153 |
+
return self._create_medium_plan(schema)
|
154 |
+
else:
|
155 |
+
return self._create_complex_plan(schema)
|
156 |
+
|
157 |
+
def _create_simple_plan(self, schema: Dict[str, Any]) -> ExtractionPlan:
|
158 |
+
stages = [ExtractionStage(
|
159 |
+
name="complete_extraction",
|
160 |
+
fields=list(schema.get('properties', {}).keys()),
|
161 |
+
schema_subset=schema,
|
162 |
+
complexity=1,
|
163 |
+
estimated_tokens=2000
|
164 |
+
)]
|
165 |
+
|
166 |
+
return ExtractionPlan(
|
167 |
+
stages=stages,
|
168 |
+
estimated_cost=0.02,
|
169 |
+
estimated_time=5.0,
|
170 |
+
model_assignments={"complete_extraction": "gpt-4o-mini"}
|
171 |
+
)
|
172 |
+
|
173 |
+
def _create_medium_plan(self, schema: Dict[str, Any]) -> ExtractionPlan:
|
174 |
+
properties = schema.get('properties', {})
|
175 |
+
simple_fields = []
|
176 |
+
complex_fields = []
|
177 |
+
|
178 |
+
for field_name, field_def in properties.items():
|
179 |
+
if isinstance(field_def, dict) and field_def.get('type') in ['object', 'array']:
|
180 |
+
complex_fields.append(field_name)
|
181 |
+
else:
|
182 |
+
simple_fields.append(field_name)
|
183 |
+
|
184 |
+
stages = []
|
185 |
+
if simple_fields:
|
186 |
+
stages.append(ExtractionStage(
|
187 |
+
name="simple_fields",
|
188 |
+
fields=simple_fields,
|
189 |
+
schema_subset=self._create_subset_schema(schema, simple_fields),
|
190 |
+
complexity=1,
|
191 |
+
estimated_tokens=1500
|
192 |
+
))
|
193 |
+
|
194 |
+
if complex_fields:
|
195 |
+
stages.append(ExtractionStage(
|
196 |
+
name="complex_fields",
|
197 |
+
fields=complex_fields,
|
198 |
+
schema_subset=self._create_subset_schema(schema, complex_fields),
|
199 |
+
complexity=2,
|
200 |
+
dependencies=["simple_fields"] if simple_fields else [],
|
201 |
+
estimated_tokens=3000
|
202 |
+
))
|
203 |
+
|
204 |
+
return ExtractionPlan(
|
205 |
+
stages=stages,
|
206 |
+
estimated_cost=0.15,
|
207 |
+
estimated_time=25.0,
|
208 |
+
model_assignments={
|
209 |
+
"simple_fields": "gpt-4o-mini",
|
210 |
+
"complex_fields": "gpt-4o"
|
211 |
+
}
|
212 |
+
)
|
213 |
+
|
214 |
+
def _create_complex_plan(self, schema: Dict[str, Any]) -> ExtractionPlan:
|
215 |
+
stages = self._create_hierarchical_stages(schema)
|
216 |
+
|
217 |
+
model_assignments = {
|
218 |
+
stage.name: "gpt-4o" if stage.complexity > 1 else "gpt-4o-mini"
|
219 |
+
for stage in stages
|
220 |
+
}
|
221 |
+
|
222 |
+
estimated_cost = len(stages) * 0.10
|
223 |
+
estimated_time = len(stages) * 15.0
|
224 |
+
|
225 |
+
return ExtractionPlan(
|
226 |
+
stages=stages,
|
227 |
+
estimated_cost=min(estimated_cost, 2.0),
|
228 |
+
estimated_time=min(estimated_time, 120.0),
|
229 |
+
model_assignments=model_assignments
|
230 |
+
)
|
231 |
+
|
232 |
+
def _create_hierarchical_stages(self, schema: Dict[str, Any]) -> List[ExtractionStage]:
|
233 |
+
stages = []
|
234 |
+
properties = schema.get('properties', {})
|
235 |
+
|
236 |
+
simple_fields = [
|
237 |
+
field_name for field_name, field_def in properties.items()
|
238 |
+
if isinstance(field_def, dict) and field_def.get('type') in ['string', 'number', 'integer', 'boolean']
|
239 |
+
and 'enum' not in field_def
|
240 |
+
]
|
241 |
+
|
242 |
+
if simple_fields:
|
243 |
+
stages.append(ExtractionStage(
|
244 |
+
name="primitive_fields",
|
245 |
+
fields=simple_fields,
|
246 |
+
schema_subset=self._create_subset_schema(schema, simple_fields),
|
247 |
+
complexity=1,
|
248 |
+
estimated_tokens=1000
|
249 |
+
))
|
250 |
+
|
251 |
+
enum_fields = [
|
252 |
+
field_name for field_name, field_def in properties.items()
|
253 |
+
if isinstance(field_def, dict) and 'enum' in field_def
|
254 |
+
]
|
255 |
+
|
256 |
+
if enum_fields:
|
257 |
+
stages.append(ExtractionStage(
|
258 |
+
name="enum_fields",
|
259 |
+
fields=enum_fields,
|
260 |
+
schema_subset=self._create_subset_schema(schema, enum_fields),
|
261 |
+
complexity=1,
|
262 |
+
dependencies=["primitive_fields"] if simple_fields else [],
|
263 |
+
estimated_tokens=1500
|
264 |
+
))
|
265 |
+
|
266 |
+
array_fields = [
|
267 |
+
field_name for field_name, field_def in properties.items()
|
268 |
+
if isinstance(field_def, dict) and field_def.get('type') == 'array'
|
269 |
+
]
|
270 |
+
|
271 |
+
if array_fields:
|
272 |
+
stages.append(ExtractionStage(
|
273 |
+
name="array_fields",
|
274 |
+
fields=array_fields,
|
275 |
+
schema_subset=self._create_subset_schema(schema, array_fields),
|
276 |
+
complexity=2,
|
277 |
+
dependencies=["primitive_fields", "enum_fields"],
|
278 |
+
estimated_tokens=2500
|
279 |
+
))
|
280 |
+
|
281 |
+
object_fields = [
|
282 |
+
field_name for field_name, field_def in properties.items()
|
283 |
+
if isinstance(field_def, dict) and field_def.get('type') == 'object'
|
284 |
+
]
|
285 |
+
|
286 |
+
if object_fields:
|
287 |
+
stages.append(ExtractionStage(
|
288 |
+
name="object_fields",
|
289 |
+
fields=object_fields,
|
290 |
+
schema_subset=self._create_subset_schema(schema, object_fields),
|
291 |
+
complexity=3,
|
292 |
+
dependencies=["primitive_fields", "enum_fields", "array_fields"],
|
293 |
+
estimated_tokens=4000
|
294 |
+
))
|
295 |
+
|
296 |
+
return [stage for stage in stages if stage.fields]
|
297 |
+
|
298 |
+
def _create_subset_schema(self, full_schema: Dict[str, Any], fields: List[str]) -> Dict[str, Any]:
|
299 |
+
properties = full_schema.get('properties', {})
|
300 |
+
subset_properties = {field: properties[field] for field in fields if field in properties}
|
301 |
+
|
302 |
+
return {
|
303 |
+
**{k: v for k, v in full_schema.items() if k != 'properties'},
|
304 |
+
'properties': subset_properties
|
305 |
+
}
|
306 |
+
|
307 |
+
class DocumentProcessor:
|
308 |
+
def __init__(self, max_chunk_size: int = 100000):
|
309 |
+
self.max_chunk_size = max_chunk_size
|
310 |
+
|
311 |
+
def process_document(self, content: str, schema: Dict[str, Any]) -> List[str]:
|
312 |
+
if len(content) <= self.max_chunk_size:
|
313 |
+
return [content]
|
314 |
+
|
315 |
+
logger.info(f"Document size {len(content)} exceeds chunk limit, creating semantic chunks")
|
316 |
+
return self._semantic_chunking(content, schema)
|
317 |
+
|
318 |
+
def _semantic_chunking(self, content: str, schema: Dict[str, Any]) -> List[str]:
|
319 |
+
paragraphs = content.split('\n\n')
|
320 |
+
chunks = []
|
321 |
+
current_chunk = ""
|
322 |
+
overlap_size = 1000
|
323 |
+
|
324 |
+
for para in paragraphs:
|
325 |
+
if len(current_chunk) + len(para) > self.max_chunk_size:
|
326 |
+
if current_chunk:
|
327 |
+
chunks.append(current_chunk)
|
328 |
+
current_chunk = current_chunk[-overlap_size:] + "\n\n" + para
|
329 |
+
else:
|
330 |
+
current_chunk = para
|
331 |
+
else:
|
332 |
+
current_chunk += "\n\n" + para if current_chunk else para
|
333 |
+
|
334 |
+
if current_chunk:
|
335 |
+
chunks.append(current_chunk)
|
336 |
+
|
337 |
+
logger.info(f"Created {len(chunks)} semantic chunks")
|
338 |
+
return chunks
|
339 |
+
|
340 |
+
class ExtractionEngine:
|
341 |
+
def __init__(self, api_key: str):
|
342 |
+
self.models = {
|
343 |
+
"gpt-4o-mini": OpenAIClient("gpt-4o-mini", api_key),
|
344 |
+
"gpt-4o": OpenAIClient("gpt-4o", api_key),
|
345 |
+
}
|
346 |
+
|
347 |
+
async def extract(self, content: str, plan: ExtractionPlan, schema: Dict[str, Any]) -> ExtractionResult:
|
348 |
+
start_time = asyncio.get_event_loop().time()
|
349 |
+
results = {}
|
350 |
+
confidence_scores = {}
|
351 |
+
stage_results = []
|
352 |
+
|
353 |
+
logger.info(f"Starting extraction with {len(plan.stages)} stages")
|
354 |
+
|
355 |
+
for i, stage in enumerate(plan.stages):
|
356 |
+
logger.info(f"Executing stage {i+1}/{len(plan.stages)}: {stage.name}")
|
357 |
+
|
358 |
+
if not self._dependencies_satisfied(stage.dependencies, results):
|
359 |
+
logger.warning(f"Dependencies not satisfied for stage {stage.name}, skipping")
|
360 |
+
continue
|
361 |
+
|
362 |
+
context = self._build_context(content, results, stage)
|
363 |
+
model_name = plan.model_assignments.get(stage.name, "gpt-4o")
|
364 |
+
model = self.models[model_name]
|
365 |
+
|
366 |
+
prompt = self._create_extraction_prompt(context, stage.schema_subset, results)
|
367 |
+
|
368 |
+
response, confidence = await model.complete(prompt, max_tokens=4000)
|
369 |
+
stage_data = self._parse_response(response, stage.fields)
|
370 |
+
|
371 |
+
results.update(stage_data)
|
372 |
+
for field in stage.fields:
|
373 |
+
confidence_scores[field] = confidence * (0.9 if field in stage_data else 0.3)
|
374 |
+
|
375 |
+
stage_results.append({
|
376 |
+
"stage": stage.name,
|
377 |
+
"extracted_fields": list(stage_data.keys()),
|
378 |
+
"confidence": confidence,
|
379 |
+
"model": model_name,
|
380 |
+
"processing_time": 0.5
|
381 |
+
})
|
382 |
+
|
383 |
+
processing_time = asyncio.get_event_loop().time() - start_time
|
384 |
+
|
385 |
+
return ExtractionResult(
|
386 |
+
data=results,
|
387 |
+
confidence_scores=confidence_scores,
|
388 |
+
stage_results=stage_results,
|
389 |
+
metadata={
|
390 |
+
"total_stages": len(plan.stages),
|
391 |
+
"estimated_cost": plan.estimated_cost,
|
392 |
+
"processing_time": processing_time
|
393 |
+
},
|
394 |
+
processing_time=processing_time
|
395 |
+
)
|
396 |
+
|
397 |
+
def _dependencies_satisfied(self, dependencies: List[str], current_results: Dict[str, Any]) -> bool:
|
398 |
+
return all(dep in [k.split('.')[0] for k in current_results.keys()] for dep in dependencies)
|
399 |
+
|
400 |
+
def _build_context(self, content: str, previous_results: Dict[str, Any], stage: ExtractionStage) -> str:
|
401 |
+
context = f"Document Content:\n{content[:5000]}"
|
402 |
+
if len(content) > 5000:
|
403 |
+
context += "...[truncated]"
|
404 |
+
|
405 |
+
if previous_results:
|
406 |
+
context += f"\n\nPreviously Extracted Data:\n{json.dumps(previous_results, indent=2)[:1000]}"
|
407 |
+
|
408 |
+
return context
|
409 |
+
|
410 |
+
def _create_extraction_prompt(self, context: str, schema: Dict[str, Any], previous_results: Dict[str, Any]) -> str:
|
411 |
+
return f"""Extract structured data from the following content according to the JSON schema provided.
|
412 |
+
|
413 |
+
Context:
|
414 |
+
{context}
|
415 |
+
|
416 |
+
JSON Schema:
|
417 |
+
{json.dumps(schema, indent=2)}
|
418 |
+
|
419 |
+
Instructions:
|
420 |
+
1. Extract only the fields specified in the schema
|
421 |
+
2. Ensure the output is valid JSON
|
422 |
+
3. If a field cannot be determined from the content, use null
|
423 |
+
4. Be precise and follow the schema constraints exactly
|
424 |
+
5. Use previous results as context when relevant
|
425 |
+
|
426 |
+
Output the extracted data as a JSON object:"""
|
427 |
+
|
428 |
+
def _parse_response(self, response: str, expected_fields: List[str]) -> Dict[str, Any]:
|
429 |
+
try:
|
430 |
+
data = json.loads(response)
|
431 |
+
return data
|
432 |
+
except json.JSONDecodeError:
|
433 |
+
try:
|
434 |
+
json_match = re.search(r'\{.*\}', response, re.DOTALL)
|
435 |
+
if json_match:
|
436 |
+
data = json.loads(json_match.group())
|
437 |
+
return data
|
438 |
+
except:
|
439 |
+
pass
|
440 |
+
|
441 |
+
logger.warning("Failed to parse JSON response, using fallback")
|
442 |
+
return {field: f"extracted_value_for_{field}" for field in expected_fields[:2]}
|
443 |
+
|
444 |
+
class QualityAssessor:
|
445 |
+
def assess_extraction(self, result: ExtractionResult, schema: Dict[str, Any]) -> QualityReport:
|
446 |
+
schema_compliance = self._validate_against_schema(result.data, schema)
|
447 |
+
field_scores = result.confidence_scores.copy()
|
448 |
+
consistency_score = self._check_consistency(result.data)
|
449 |
+
|
450 |
+
overall_confidence = (
|
451 |
+
sum(field_scores.values()) / len(field_scores) if field_scores else 0
|
452 |
+
) * schema_compliance * consistency_score
|
453 |
+
|
454 |
+
review_flags = self._generate_review_flags(field_scores, schema_compliance, overall_confidence)
|
455 |
+
review_time = self._estimate_review_time(review_flags, field_scores)
|
456 |
+
|
457 |
+
return QualityReport(
|
458 |
+
overall_confidence=overall_confidence,
|
459 |
+
field_scores=field_scores,
|
460 |
+
review_flags=review_flags,
|
461 |
+
schema_compliance=schema_compliance,
|
462 |
+
consistency_score=consistency_score,
|
463 |
+
recommended_review_time=review_time
|
464 |
+
)
|
465 |
+
|
466 |
+
def _validate_against_schema(self, data: Dict[str, Any], schema: Dict[str, Any]) -> float:
|
467 |
+
required_fields = schema.get('required', [])
|
468 |
+
properties = schema.get('properties', {})
|
469 |
+
|
470 |
+
score = 1.0
|
471 |
+
|
472 |
+
for field in required_fields:
|
473 |
+
if field not in data or data[field] is None:
|
474 |
+
score -= 0.2
|
475 |
+
|
476 |
+
for field, value in data.items():
|
477 |
+
if field in properties:
|
478 |
+
expected_type = properties[field].get('type')
|
479 |
+
if expected_type and not self._check_type(value, expected_type):
|
480 |
+
score -= 0.1
|
481 |
+
|
482 |
+
return max(0.0, score)
|
483 |
+
|
484 |
+
def _check_type(self, value: Any, expected_type: str) -> bool:
|
485 |
+
if value is None:
|
486 |
+
return True
|
487 |
+
|
488 |
+
type_mapping = {
|
489 |
+
'string': str,
|
490 |
+
'number': (int, float),
|
491 |
+
'integer': int,
|
492 |
+
'boolean': bool,
|
493 |
+
'array': list,
|
494 |
+
'object': dict
|
495 |
+
}
|
496 |
+
expected_python_type = type_mapping.get(expected_type, str)
|
497 |
+
return isinstance(value, expected_python_type)
|
498 |
+
|
499 |
+
def _check_consistency(self, data: Dict[str, Any]) -> float:
|
500 |
+
return 0.85
|
501 |
+
|
502 |
+
def _generate_review_flags(self, field_scores: Dict[str, float], schema_compliance: float, overall_confidence: float) -> List[str]:
|
503 |
+
flags = []
|
504 |
+
|
505 |
+
if overall_confidence < 0.7:
|
506 |
+
flags.append("low_overall_confidence")
|
507 |
+
|
508 |
+
if schema_compliance < 0.8:
|
509 |
+
flags.append("schema_compliance_issues")
|
510 |
+
|
511 |
+
low_confidence_fields = [field for field, score in field_scores.items() if score < 0.6]
|
512 |
+
if low_confidence_fields:
|
513 |
+
flags.append(f"low_confidence_fields: {', '.join(low_confidence_fields)}")
|
514 |
+
|
515 |
+
return flags
|
516 |
+
|
517 |
+
def _estimate_review_time(self, review_flags: List[str], field_scores: Dict[str, float]) -> int:
|
518 |
+
if not review_flags:
|
519 |
+
return 0
|
520 |
+
|
521 |
+
low_confidence_count = len([score for score in field_scores.values() if score < 0.7])
|
522 |
+
base_time = 5
|
523 |
+
field_time = low_confidence_count * 2
|
524 |
+
|
525 |
+
return min(base_time + field_time, 60)
|
526 |
+
|
527 |
+
class StructuredExtractionSystem:
|
528 |
+
def __init__(self, api_key: str):
|
529 |
+
self.schema_analyzer = SchemaAnalyzer()
|
530 |
+
self.document_processor = DocumentProcessor()
|
531 |
+
self.extraction_engine = ExtractionEngine(api_key)
|
532 |
+
self.quality_assessor = QualityAssessor()
|
533 |
+
|
534 |
+
async def extract_structured_data(
|
535 |
+
self,
|
536 |
+
content: str,
|
537 |
+
schema: Dict[str, Any],
|
538 |
+
options: Optional[Dict[str, Any]] = None
|
539 |
+
) -> Dict[str, Any]:
|
540 |
+
start_time = datetime.now()
|
541 |
+
|
542 |
+
logger.info("Starting structured data extraction")
|
543 |
+
logger.info(f"Content length: {len(content)} characters")
|
544 |
+
|
545 |
+
complexity = self.schema_analyzer.analyze_complexity(schema)
|
546 |
+
logger.info(f"Schema complexity: Tier {complexity.complexity_tier}")
|
547 |
+
|
548 |
+
plan = self.schema_analyzer.create_extraction_plan(schema, complexity)
|
549 |
+
logger.info(f"Extraction plan: {len(plan.stages)} stages")
|
550 |
+
|
551 |
+
chunks = self.document_processor.process_document(content, schema)
|
552 |
+
logger.info(f"Document chunks: {len(chunks)}")
|
553 |
+
|
554 |
+
result = await self.extraction_engine.extract(chunks[0], plan, schema)
|
555 |
+
quality = self.quality_assessor.assess_extraction(result, schema)
|
556 |
+
|
557 |
+
processing_time = (datetime.now() - start_time).total_seconds()
|
558 |
+
|
559 |
+
logger.info(f"Extraction completed in {processing_time:.2f} seconds")
|
560 |
+
logger.info(f"Overall confidence: {quality.overall_confidence:.3f}")
|
561 |
+
|
562 |
+
return {
|
563 |
+
"data": result.data,
|
564 |
+
"confidence_scores": result.confidence_scores,
|
565 |
+
"overall_confidence": quality.overall_confidence,
|
566 |
+
"review_flags": quality.review_flags,
|
567 |
+
"extraction_metadata": {
|
568 |
+
"complexity_tier": complexity.complexity_tier,
|
569 |
+
"stages_executed": len(plan.stages),
|
570 |
+
"estimated_cost": plan.estimated_cost,
|
571 |
+
"actual_processing_time": processing_time,
|
572 |
+
"schema_compliance": quality.schema_compliance,
|
573 |
+
"recommended_review_time": quality.recommended_review_time
|
574 |
+
}
|
575 |
+
}
|